【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(﹣6,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)BCA=45°時(shí),點(diǎn)C的坐標(biāo)為   

【答案】(0,12)或(0,﹣12)

【解析】

試題設(shè)線段BA的中點(diǎn)為E,

點(diǎn)A(4,0)、B(﹣6,0),AB=10,E(﹣1,0)。

(1)如答圖1所示,過(guò)點(diǎn)E在第二象限作EPBA,且EP=AB=5,

則易知PBA為等腰直角三角形,BPA=90°,PA=PB=。

以點(diǎn)P為圓心,PA(或PB)長(zhǎng)為半徑作P,與y軸的正半軸交于點(diǎn)C,

∵∠BCA為P的圓周角,

∴∠BCA=BPA=45°,則點(diǎn)C即為所求。

過(guò)點(diǎn)P作PFy軸于點(diǎn)F,則OF=PE=5,PF=1,

在RtPFC中,PF=1,PC=,

由勾股定理得:,

OC=OF+CF=5+7=12。

點(diǎn)C坐標(biāo)為(0,12)。

(2)如答圖2所示,根據(jù)圓滿的對(duì)稱性質(zhì),可得y軸負(fù)半軸上的點(diǎn)C坐標(biāo)為(0,﹣12)。

綜上所述,點(diǎn)C坐標(biāo)為(0,12)或(0,﹣12)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解本校七年級(jí)學(xué)生期末考試數(shù)學(xué)成績(jī)情況,決定進(jìn)行抽樣分析已知該校七年級(jí)共有10個(gè)班,每班40名學(xué)生,請(qǐng)根據(jù)要求回答下列問(wèn)題:

1)若要從全年級(jí)學(xué)生中抽取一個(gè)40人的樣本,你認(rèn)為以下抽樣方法中比較合理的有__________.(只要填寫序號(hào)).

①隨機(jī)抽取一個(gè)班級(jí)的學(xué)生;

②在全年級(jí)學(xué)生中隨機(jī)抽取40名男學(xué)生;

③在全年級(jí)10個(gè)班中各隨機(jī)抽取4名學(xué)生.

2)將抽取的40名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行分組,并繪制頻數(shù)表和成績(jī)分布統(tǒng)計(jì)圖(不完整),如圖:

①請(qǐng)補(bǔ)充完整頻數(shù)表;

成績(jī)(分)

頻數(shù)

頻率

類(100-120

__________

0.3

類(80-99

__________

0.4

類(60-79

8

__________

類(40-59

4

__________

②寫出圖中、類圓心角度數(shù);并估計(jì)全年級(jí)、類學(xué)生大約人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(),在四邊形中,,,,分別是,上的點(diǎn),且.探究圖中線段,,之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)到點(diǎn),使,連接,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)該是__________

如圖(),若在四邊形中,,,,分別是,上的點(diǎn),且,上述結(jié)論是否仍然成立,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)錫市靈山勝境公司廠生產(chǎn)一種新的大佛紀(jì)念品,每件紀(jì)念品制造成本為18元,試銷過(guò)程發(fā)現(xiàn),每月銷量萬(wàn)件與銷售單價(jià)之間的關(guān)系可以近似地看作一次函數(shù)

寫出公司每月的利潤(rùn)萬(wàn)元與銷售單價(jià)之間函數(shù)解析式;

當(dāng)銷售單價(jià)為多少元時(shí),公司每月能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少?

根據(jù)工商部門規(guī)定,這種紀(jì)念品的銷售單價(jià)不得高于32如果公司要獲得每月不低于350萬(wàn)元的利潤(rùn),那么制造這種紀(jì)念品每月的最低制造成本需要多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)、和原點(diǎn)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線,垂足為,并與直線OA交于點(diǎn)C

求直線OA和二次函數(shù)的解析式;

當(dāng)點(diǎn)P在直線OA的上方時(shí),

當(dāng)PC的長(zhǎng)最大時(shí),求點(diǎn)P的坐標(biāo);

當(dāng)時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對(duì)頂角為   ,∠BOE的鄰補(bǔ)角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACB中,∠ACB=90°,∠A=75°,點(diǎn)DAB的中點(diǎn).將ACD沿CD翻折得到A′CD,連接A′B

1)求證:CDA′B

2)若AB=4,求A′B2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CE、CB分別是△ABC與△ADC的中線,且∠ACB=∠ABC.求證:CD=2CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案