【題目】已知:等腰,,以為直徑的,分別交、于點(diǎn)、點(diǎn)

1)如圖1,求證:點(diǎn)為弧的中點(diǎn);

2)如圖2,點(diǎn)為直徑上一點(diǎn),過(guò)點(diǎn),交過(guò)點(diǎn)且垂直于的直線于點(diǎn),連接,,設(shè),求的函數(shù)關(guān)系式;

3)如圖3,在(2)的條件下,點(diǎn)為弧上一點(diǎn),連接于點(diǎn),延長(zhǎng)于點(diǎn),若,,求弦的長(zhǎng).

【答案】1)見(jiàn)詳解;(2m=n+45;(3

【解析】

1)連接AC,根據(jù)題意知,∠ACB=90°,由AB=AE,等腰三角形三線合一可得AC平分∠BAE,相等的圓周角所對(duì)的弧相等即可證得;

2)根據(jù)FHBC,推出∠ABE=BFH=CED=m°,由外角性質(zhì)知DFB=A+ADF,利用三角形內(nèi)角和180°以及∠DFH=135°,代換可得mn的函數(shù)關(guān)系式;

3)設(shè)∠DAC=BAC=,由(2)的結(jié)論可推出MNAD,通過(guò)△BER≌△FGH,FG=DE,再利用勾股定理計(jì)算WM,可得出MN=2WM即可得結(jié)果.

1)連接AC,

AB是直徑,

∴∠ACB=90°,

AB=AE,

AC平分∠BAE,

∴∠BAC=EAC,

∴點(diǎn)C是弧BD的中點(diǎn);

2)∵AB=AE,FHBC,

∴∠BFH=EBA=E=m°,∠A=180°-2m°,

∵∠ADF=n°,

∴∠BFD=A+ADF=180°-2m°+n°,

又∵∠DFH=135°,∠DFH=BFH+BFD,

135°=m°+180°-2m°+n°

m=45+n,

mn的函數(shù)關(guān)系式為:m=45+n,

故答案為:m=45+n;

3)設(shè)∠DAC=BAC=

由(2)∠CED=ADF+45°,

∴∠ADF=90°--45°=45°-,

∴∠DFB=45°-+2=45°+,

∵∠BFM+2BFD=180°

∴∠BFM=90°-2,

∵∠BFH=AFQ=90°-,

∴∠HFG=90°--90°-2=

∴∠BFG+E=180°,

∴∠ESM=90°,即MNAD,

導(dǎo)角:∠FDB=DFB=45°+,

BF=BD

又∵∠E=BFH=90°-,

∴∠DBR=FBH=,

∴△BDR≌△BHF,

FH=DR

可推出△BER≌△FGH,

FG=DE,

FGAB=25,

DEAE=25,

設(shè)DE=2,AE=5=AB,

AD=3BD=4,

tan2=tan=,

tanADF=tan45°-=

CB-FH=CK=QF=4,

AF=4,

SF=×4=,

AS=×3=,

DS=×3=,

AD=AS+DS=12,

TD-AD=6,

ST=OW=DS-DT=

AB=×5=20,

r=10,

WM==,

,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地有甲、乙兩棟建筑物,小明于乙樓樓頂A點(diǎn)處看甲樓樓底D點(diǎn)處的俯角為45°,走到乙樓B點(diǎn)處看甲樓樓頂E點(diǎn)處的俯角為60°,已知AB=6mDE=10m.求乙樓的高度AC的長(zhǎng).(參考數(shù)據(jù):,,精確到0.1m.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+2的圖象與y軸交于A點(diǎn),與x軸交于B點(diǎn),P的半徑為,其圓心Px軸上運(yùn)動(dòng).

1)如圖1,當(dāng)圓心P的坐標(biāo)為(1,0)時(shí),求證:P與直線AB相切;

2)在(1)的條件下,點(diǎn)CP上在第一象限內(nèi)的一點(diǎn),過(guò)點(diǎn)CP的切線交直線AB于點(diǎn)D,且∠ADC120°,求D點(diǎn)的坐標(biāo);

3)如圖2,若P向左運(yùn)動(dòng),圓心P與點(diǎn)B重合,且P與線段AB交于E點(diǎn),與線段BO相交于F點(diǎn),G點(diǎn)為弧EF上一點(diǎn),直接寫(xiě)出AG+OG的最小值 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BC,ADBC于點(diǎn)D,BEAC于點(diǎn)E,ADBE交于點(diǎn)F,BHAB于點(diǎn)B,點(diǎn)MBC的中點(diǎn),連接FM并延長(zhǎng)交BH于點(diǎn)H


1)如圖①所示,若∠ABC=30°,求證:DF+BH=BD;
2)如圖②所示,若∠ABC=45°,如圖③所示,若∠ABC=60°(點(diǎn)M與點(diǎn)D重合),猜想線段DF、BHBD之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,上的中線,,點(diǎn)的延長(zhǎng)線上,連接,,,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直徑,點(diǎn)為半徑上異于點(diǎn)和點(diǎn)的一個(gè)點(diǎn),過(guò)點(diǎn)作與直徑垂直的弦,連接,作點(diǎn),連接、,點(diǎn).

1)求證:的切線;

2)若的半徑為,,求;

3)請(qǐng)猜想的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°AC4cm,BC5cm,點(diǎn)DBC上,且CD3cm.動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)C出發(fā),均以1cm/s的速度運(yùn)動(dòng),其中點(diǎn)P沿CA向終點(diǎn)A運(yùn)動(dòng);點(diǎn)Q沿CB向終點(diǎn)B運(yùn)動(dòng).過(guò)點(diǎn)PPEBC,分別交AD,AB于點(diǎn)E,F,設(shè)動(dòng)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒.

1)求DQ的長(zhǎng)(用含t的代數(shù)式表示);

2)以點(diǎn)Q,D,FE為頂點(diǎn)圍成的圖形面積為S,求St之間的函數(shù)關(guān)系式;

3)連接PQ,若點(diǎn)MPQ中點(diǎn),在整個(gè)運(yùn)動(dòng)過(guò)程中,直接寫(xiě)出點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,要在某東西走向的AB兩地之間修一條筆直的公路,在公路起點(diǎn)A處測(cè)得某農(nóng)戶CA的北偏東68°方向上.在公路終點(diǎn)B處測(cè)得該農(nóng)戶c在點(diǎn)B的北偏西45°方向上.已知A、B兩地相距2400米.

1)求農(nóng)戶c到公路B的距離;(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

2)現(xiàn)在由于任務(wù)緊急,要使該修路工程比原計(jì)劃提前4天完成,需將該工程原定的工作效率提高20%,求原計(jì)劃該工程隊(duì)毎天修路多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A1A2,A3,…Anx軸上的點(diǎn),且OA1A1A2A2A3An-1An1,分別過(guò)點(diǎn)A1,A2,A3,…Anx軸的垂線交反比例函數(shù)y(x0)的圖象于點(diǎn)B1B2,B3,…Bn,過(guò)點(diǎn)B2B2P1A1B1于點(diǎn)P1,過(guò)點(diǎn)B3B3P2A2B2于點(diǎn)P2……,記△B1P1B2的面積為S1,△B2P2B3的面積為S2……,△B6P6B7的面積為S6,則S1S2S3S6______________

查看答案和解析>>

同步練習(xí)冊(cè)答案