精英家教網 > 初中數學 > 題目詳情
為了探索代數式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數形結合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則AC=
x2+1
,CE=
(8-x)2+25
則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3

(2)請你根據上述的方法和結論,代數式
x2+4
+
(12-x)2+9
的最小值等于
13
13
分析:(1)根據兩點之間線段最短可知AC+CE的最小值就是線段AE的長度.過點E作EF∥BD,交AB的延長線于F點.在Rt△AEF中運用勾股定理計算求解.
(2)由(1)的結果可作BD=12,過點A作AF∥BD,交DE的延長線于F點,使AB=2,ED=3,連接AE交BD于點C,然后構造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性質可求得AE的值就是代數式
x2+4

+
(12-x)2+9
的最小值.
解答:解:(1)過點E作EF∥BD,交AB的延長線于F點,
根據題意,四邊形BDEF為矩形.
AF=AB+BF=5+1=6,EF=BD=8.
∴AE=
62+82
=10.
即AC+CE的最小值是10.
 
x2+1
+
(8-x)2+25
=10,
∵EF∥BD,
∴AB AF=BC EF,
1
6
=
x
8
,
解得:x=
4
3


(2)過點A作AF∥BD,交DE的延長線于F點,
根據題意,四邊形ABDF為矩形.
EF=AB+DE=2+3=5,AF=DB=12.
∴AE=
52+122
=13.
即AC+CE的最小值是13.
故答案為10,
4
3
,13.
點評:本題主要考查了最短路線問題以及勾股定理應用,利用了數形結合的思想,通過構造直角三角形,利用勾股定理求解是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•青田縣模擬)為了探索代數式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數形結合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則AC=
x2+1
,CE=
(8-x)2+25
,則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3
;
(2)請你根據上述的方法和結論,試構圖求出代數式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

為了探索代數式
x2+1
+
(8-x)2+25
的最小值,
小張巧妙的運用了數學思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連結AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則AC=
x2+1
,CE=
(8-x)2+25
 則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3
;
(2)題中“小張巧妙的運用了數學思想”是指哪種主要的數學思想?
(選填:函數思想,分類討論思想、類比思想、數形結合思想)
(3)請你根據上述的方法和結論,試構圖求出代數式
x2+4
+
(12-x)2+9
的最小值
13
13

查看答案和解析>>

同步練習冊答案