【題目】已知線段AB=4.8cm,點(diǎn)C是線段AB的中點(diǎn),點(diǎn)D是線段CB的中點(diǎn),點(diǎn)E在線段AB上,且CE=AC,畫圖并計(jì)算DE的長(zhǎng).
【答案】DE的長(zhǎng)為2cm或0.4cm.
【解析】
分點(diǎn)E在線段AC上及點(diǎn)E在線段BC上兩種情況考慮:
(1)當(dāng)點(diǎn)E在線段AC上時(shí),根據(jù)AB的長(zhǎng)度及點(diǎn)C、D分別是線段AB、CB的中點(diǎn),即可得出CD、CE的長(zhǎng)度,將其代入DE=CD+CE中即可求出DE的長(zhǎng);
(2)當(dāng)點(diǎn)E在線段CB上時(shí),根據(jù)AB的長(zhǎng)度及點(diǎn)C、D分別是線段AB、CB的中點(diǎn),即可得出CD、CE的長(zhǎng)度,將其代入DE=CD-CE中即可求出DE的長(zhǎng).綜上即可得出結(jié)論.
(1)當(dāng)點(diǎn)E在線段AC上時(shí),如圖1所示.
∵AB=4.8cm,點(diǎn)C是線段AB的中點(diǎn),
∴AC=BC=AB=2.4cm.
∵點(diǎn)D是線段CB的中點(diǎn),
∴CD=BC=1.2cm.
又∵CE=AC,
∴CE=0.8cm,
∴DE=CD+CE=1.2+0.8=2(cm).
(2)當(dāng)點(diǎn)E在線段BC上時(shí),如圖2所示.
∵AB=4.8cm,點(diǎn)C是線段AB的中點(diǎn),
∴AC=BC=AB=2.4cm.
∵點(diǎn)D是線段CB的中點(diǎn),
∴CD=BC=1.2cm.
又∵CE=AC,
∴CE=0.8cm,
∴DE=CD﹣CE=1.2﹣0.8=0.4(cm).
綜上所述:DE的長(zhǎng)為2cm或0.4cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如同,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長(zhǎng)線上,且∠A=∠BCD=30°,AC=2,則由 ,線段CD和線段BD所圍成圖形的陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的內(nèi)接正五邊形ABCDE的對(duì)角線AD與BE相交于點(diǎn)G,AE=2,則EG的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條直線分別與直線BE、直線CE、直線CF、直線BF相交于點(diǎn)A,G,D,H且∠1=∠2,∠B=∠C
(1)找出圖中相互平行的線,說(shuō)說(shuō)它們之間為什么是平行的;
(2)證明:∠A=∠D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BD⊥AM垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若DC=2,求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O是直線AB上一點(diǎn),OC、OD為從點(diǎn)O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.
(1)如圖①,求∠AOC的度數(shù);
(2)如圖②,在∠AOD的內(nèi)部作∠MON=90°,請(qǐng)直接寫出∠AON與∠COM之間的數(shù)量關(guān)系 ;
(3)在(2)的條件下,若OM為∠BOC的角平分線,試說(shuō)明∠AON=∠CON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長(zhǎng)的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)C,若ACAB=12,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com