【題目】如圖,EG⊥BC于點G,AD⊥BC于點D,∠1=∠E,請證明AD平分∠BAC.

【答案】證明:∵AD⊥BC,EG⊥BC,

∴∠ADC=∠EGC=90°(垂直定義),

∴AD∥EG(同位角相等,兩直線平行),

∴∠1=∠2(兩直線平行,內(nèi)錯角相等),

∠E=∠3(兩直線平行,同位角相等),

∵∠E=∠1,

∴∠2=∠3(等量代換),

∴AD平分∠BAC(角平分線定義).


【解析】證平分即證兩角相等,然后分別利用平行線的同位角相等、內(nèi)錯角相等轉(zhuǎn)化∠2、∠3.

【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結(jié)論是平行線的性質(zhì).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)31,5,34的眾數(shù)為( )

A.3B.2.5C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.矩形的對角線相互垂直B.菱形的對角線相等

C.平行四邊形是軸對稱圖形D.等腰梯形的對角線相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1:拋物線 軸于兩點,交軸于點,對稱軸為直線,且過點.

(1)求出拋物線的解析式及點坐標,

(2)點 ,作直線交拋物線于另一點,點是直線下方拋物線上的點,連接、,求的面積的最大值,并求出此時點的坐標;

(3)點、是拋物線對稱軸上的兩點,且已知, ),, ),當為何值時,四邊形周長最?并求出四邊形周長的最小值,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一口袋中只有若干粒白色圍棋子,沒有其他顏色的棋子;而且不許將棋子倒出來數(shù),請你設計一個方案估計出其中白色棋子的數(shù)目.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個幾何體的主視圖、俯視圖和左視圖都是大小相同的圓,則這個幾何體是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學初三年級的學生開展測量物體高度的實踐活動,他們要測量一幢建筑物AB的高度.如圖,他們先在點C處測得建筑物AB的頂點A的仰角為30°,然后向建筑物AB前進10m到達點D處,又測得點A的仰角為60°,那么建筑物AB的高度是________ m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某活動小組為了估計裝有5個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗,兩人一組,共20組進行摸球?qū)嶒灒渲幸晃粚W生摸球,另一位學生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗,匯總起來后,摸到紅球次數(shù)為6000次.
(1)估計從袋中任意摸出一個球,恰好是紅球的概率是多少?
(2)請你估計袋中紅球接近多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.

(1)求d的值;

(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?

查看答案和解析>>

同步練習冊答案