【題目】如圖,一扇窗戶,窗框為鋁合金材料,下面是由兩個大小相等的長方形窗框構成,上面是由三個大小相等的扇形組成的半圓窗框構成,窗戶半圓部分安裝彩色玻璃,兩個長方形部分安裝透明玻璃(本題中π取3,長度單位為米).
(1)一扇這樣窗戶一共需要鋁合金多少米?(用含x,y的代數(shù)式表示)
(2)一扇這樣窗戶一共需要玻璃多少平方米?鋁合金窗框?qū)挾群雎圆挥?/span>(用含x,y的代數(shù)式表示)
(3)某公司需要購進20扇窗戶,在同等質(zhì)量的前提下,甲、乙兩個廠商分別給出如下報價:
鋁合金(米/元) | 彩色玻璃(平方米/元) | 透明玻璃(平方米/元) | |
甲廠商 | 200 | 80 | 不超過100平方米的部分,90元/平方米,超過100平方米的部分,70元/平方米 |
乙廠商 | 220 | 60 | 80元/平方米,每購1平方米透明玻璃送0.1米鋁合金 |
當x=2,y=3時,該公司在哪家廠商購買窗戶合算?
【答案】L=x+2y(2)S=xy+x2(3)公司在甲廠商購買窗戶合算,理由見解析.
【解析】
(1)求出制作窗框的鋁合金材料的總長度即可;
(2)按照矩形與半圓的面積的和即為窗框的面積;
(3)分別求出甲、乙的費用比較大小即可判斷.
(1)4x+2y+πx=(x+2y)米,
答:一扇這樣窗戶一共需要鋁合金(x+2y)米;
(2)xy+×π()2=(xy+x2)米2,
答:一扇這樣窗戶一共需要玻璃(xy+x2)平方米;
(3)20個這樣的窗戶共用鋁合金為20×()=340(米),
共用彩色玻璃為20×=30(平方米),
共用透明玻璃為20×2×3=120(平方米),
甲的費用:340×200+100×90+(120-100)×70+30×80=68000+9000+1400+2400=80800元;
乙的費用:(340-120×0.1)×220+120×80+30×60=72160+9600+1800=83560元,
∵80800<83560,
∴公司在甲廠商購買窗戶合算.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD被直線EF所截,點G,H為它們的交點,∠AGE與它的同位角相等,HP平分∠GHD.∠AGH∶∠BGH=2∶7,試求∠CHG和∠PHD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列三行數(shù),并完成后面的問題:
①-2,4,-8,16,……
②1,-2,4,-8,……
③0,-3,3,-9,……
(1)思考第①行數(shù)的規(guī)律,寫出第個數(shù)字是________;
(2)設第②行第個數(shù)為第③行第個數(shù)為請直接寫出與之間的關系;
(3)設分別表示第①、②、③行數(shù)的第2019個數(shù)字,求的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進枇杷20噸,桃子12噸.現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批水果運回,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.
(1)如何安排甲、乙兩種貨車可一次性地運到?有幾種方案?
(2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果商場應選擇哪種方案,使運輸費最少?最少運費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有A、B兩種飲料,這兩種飲料的體積和單價如表:
類型 | A | B |
單瓶飲料體積/升 | 1 | 2.5 |
單價/元 | 3 | 4 |
(1)小明購買A、B兩種飲料共13升,用了25元,他購買A,B兩種飲料個各多少瓶?
(2)若購買A、B兩種飲料共36瓶,且A種飲料的數(shù)量不多于B種飲料的數(shù)量,則最少可以購買多少升飲料?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點A(2,﹣3)和點B(n,2).
(1)求直線與雙曲線的表達式;
(2)對于橫、縱坐標都是整數(shù)的點給出名稱叫整點.動點P是雙曲線y= (m≠0)上的整點,過點P作垂直于x軸的直線,交直線AB于點Q,當點P位于點Q下方時,請直接寫出整點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結論是否成立?若不成立,請直接寫出正確結論(不需要證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com