如圖,平面直角坐標(biāo)系中,直線y=-x+8分別交x軸、y軸于點(diǎn)B、點(diǎn)A,點(diǎn)D從點(diǎn)A出發(fā)沿射線AB方向以每秒1個(gè)單位長的速度勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)沿射線BC方向以每秒個(gè)單位長的速度勻速運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥AO于點(diǎn)F,連接DE、EF.
(1)當(dāng)t為何值時(shí),△BDE與△BAO相似;
(2)寫出以點(diǎn)D、F、E、O為頂點(diǎn)的四邊形面積s與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系;
(3)是否存在這樣一個(gè)時(shí)刻,此時(shí)以點(diǎn)D、F、E、B為頂點(diǎn)的四邊形是菱形,如果存在,求出相應(yīng)的t的值;如果不存在,請(qǐng)說明理由.
(1)5或;(2)s==24-(0<t≤10),s=(t>10);(3)或25s時(shí)
解析試題分析:(1)由直線y=-x+8分別交x軸、y軸于點(diǎn)B、點(diǎn)A,可得OB=6,OA=8,則可得AD=t,BE=t,BD=10-t,由△BDE與△BAO具有公共角∠ABO可得當(dāng)或時(shí)兩三角形相似,即可求得結(jié)果;
(2)①當(dāng)點(diǎn)D在線段AB上時(shí),先證得△ADF∽△ABO,根據(jù)相似三角形的性質(zhì)可得四邊形DFEB為平行四邊形,根據(jù)平行四邊形的性質(zhì)求解即可;②當(dāng)點(diǎn)D在AB的延長線上時(shí),四邊形OEFD為梯形,
根據(jù)梯形的面積公式求解即可;
(3)分①當(dāng)點(diǎn)D在線段AB上時(shí),②當(dāng)點(diǎn)D在AB的延長線上時(shí),證得四邊形DFEB為平行四邊形,根據(jù)平行四邊形的性質(zhì)及菱形的判定分析即可.
(1)∵直線y=-x+8分別交x軸、y軸于點(diǎn)B、點(diǎn)A,
∴OB=6,OA=8,
則AD=t,BE=t,BD=10-t,
∵△BDE與△BAO具有公共角∠ABO.
∴當(dāng)或時(shí)兩三角形相似.
即或,解得t=5或.
∴當(dāng)t為5或時(shí),△BDE與△BAO相似.
(2)①當(dāng)點(diǎn)D在線段AB上時(shí),
∵DF⊥OA,BO⊥AO,∴DF∥BE,∴△ADF∽△ABO,
∴DF∶BO=AD∶AB=AF∶OA,∴DF=,AF=,
∴BE=DF,∴四邊形DFEB為平行四邊形,S△DEF=S△BEF=SDFEB,
∴四邊形OFDE的面積等于△BOF的面積,
∴s=BO·OF=×6×(8-)=24-(0<t≤10).
②當(dāng)點(diǎn)D在AB的延長線上時(shí),四邊形OEFD為梯形,
s=(OE+DF)·OF=×(-6+)×=(t>10)
(3)①當(dāng)點(diǎn)D在線段AB上時(shí),已知四邊形DFEB為平行四邊形,只需保證BD=BE,即可保證四邊形DFEB是菱形,即10-t=,解得t=.
②當(dāng)點(diǎn)D在AB的延長線上時(shí),易證四邊形BEFD為平行四邊形,只需保證BD=BE,即可保證四邊形DFEB是菱形,即t-10=,解得t=25.
綜上所述,當(dāng)t的值為或25時(shí),以點(diǎn)D、F、E、B為頂點(diǎn)的四邊形是菱形.
考點(diǎn):動(dòng)點(diǎn)的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
1 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
a+2 |
S△CAD |
S△DGH |
AD |
GH |
FC+2AE |
3AM |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com