如果a=2,am=5,an=6,求:(1)am+1,(2)an+2,(3)am+n+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:同步輕松練習(xí)七年級(jí) 數(shù)學(xué)(上) 題型:044
如圖所示,點(diǎn)C是線段AB上的一點(diǎn),點(diǎn)M是線段AC的中點(diǎn),點(diǎn)N是線段BC的中點(diǎn);
(1)如果AB=10cm,AM=3cm,那么NC=________;
(2)如果MN=6cm,那么AB=________;
(3)如果AC∶CB=3∶2,NB=2.5cm,那么MN=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:課堂三級(jí)講練數(shù)學(xué)九年級(jí)(上) 題型:013
如圖,AB是⊙O直徑,M是⊙O上一點(diǎn),MN⊥AB,垂足為N、P、Q分別是 弧AM,BM上一點(diǎn)(不與端點(diǎn)重合),如果∠MNP=∠MNQ,
①∠1=∠2;②∠P+∠Q=;③∠Q=∠PMN;④PM=Om;⑤MN2=PN·QN,其中正確的是
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年山東臨沂中考數(shù)學(xué)試卷及答案 題型:059
數(shù)學(xué)課上,張老師出示了問題:如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交正方形外角∠DCG的平行線CF于點(diǎn)F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖,點(diǎn)E是BC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:山東省臨沂市2010屆九年級(jí)學(xué)業(yè)考試樣卷數(shù)學(xué)試題 題型:059
數(shù)學(xué)課上,張老師出示了問題:如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角∠DCG的平行線CF于點(diǎn)F,求證:AE=EF
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連結(jié)ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖,點(diǎn)E是BC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com