如圖,⊙O的半徑為6cm,經(jīng)過⊙O上一點C作⊙O的切線交半徑OA的延長于點B,作∠ACO的平分線交⊙O于點D,交OA于點F,延長DA交BC于點E.
(1)求證:ACOD;
(2)如果DE⊥BC,求
AC
的長度.
(1)證明:∵OC=OD,
∴∠OCD=∠ODC,
∵CD平分∠ACO,
∴∠OCD=∠ACD,
∴∠ACD=∠ODC,
∴ACOD;…(2分)

(2)∵BC切⊙O于點C,
∴BC⊥OC,
∵DE⊥BC,
∴OCDE,…(3分)
∵ACOD,
∴四邊形ADOC是平行四邊形,
∵OC=OD,
∴平行四邊形ADOC是菱形,…(4分)
∴OC=AC=OA,
∴△AOC是等邊三角形,
∴∠AOC=60°,…(6分)
AC
長度=
60π×6
180
=2π.…(8分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點T,與AQ相交于兩點B、C.
(1)BT是否平分∠OBA?證明你的結論;
(2)若已知AT=4,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,P是⊙O的半徑OA上的一點,D在⊙O上,且PD=PO.過點D作⊙O的切線交OA的延長線于點C,延長交⊙O于K,連接KO,OD.
(1)證明:PC=PD;
(2)若該圓半徑為5,CDKO,請求出OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,AB是半圓O的直徑,P是AB延長線上的一點,若OB=BP,則∠P的度數(shù)為( 。
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,∠BAC=30°.
(1)求∠P的大;
(2)若AB=6,求PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦ACPM,連接OM、BC.
求證:(1)△ABC△POM;(2)2OA2=OP•BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知四邊形OABC是菱形,∠O=60°,點M是邊OA的中點,以點O為圓心,r為半徑作⊙O分別交OA,OC于點D,E,連接BM.若BM=
7
,
DE
的長是
3
π
3
.求證:直線BC與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知以直角梯形ABCD的腰CD為直徑的半圓O與梯形上底AD、下底BC以及腰AB均相切,切點分別是D,C,E.若半圓O的半徑為2,梯形的腰AB為5,則該梯形的周長是(  )
A.9B.10C.12D.14

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交于點P,則∠BPC=______°.

查看答案和解析>>

同步練習冊答案