精英家教網 > 初中數學 > 題目詳情
如圖,已知以直角梯形ABCD的腰CD為直徑的半圓O與梯形上底AD、下底BC以及腰AB均相切,切點分別是D,C,E.若半圓O的半徑為2,梯形的腰AB為5,則該梯形的周長是( 。
A.9B.10C.12D.14

根據切線長定理,得AD=AE,BC=BE,所以梯形的周長是5×2+4=14.故選D.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,PA,PB分別切⊙O于A、B,∠APB=50°,BD是⊙O的直徑,求∠ABD的大。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O的半徑為6cm,經過⊙O上一點C作⊙O的切線交半徑OA的延長于點B,作∠ACO的平分線交⊙O于點D,交OA于點F,延長DA交BC于點E.
(1)求證:ACOD;
(2)如果DE⊥BC,求
AC
的長度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:在⊙O中,AB是直徑,AC是弦,OE⊥AC于點E,過點C作直線FC,使∠FCA=∠AOE,交AB的延長線于點D.
(1)求證:FD是⊙O的切線;
(2)設OC與BE相交于點G,若OG=2,求⊙O半徑的長;
(3)在(2)的條件下,當OE=3時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.
(1)猜想ED與⊙O的位置關系,并說明理由;
(2)若cos∠MAN=
1
2
,AE=
3
,求陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,AB是⊙O的直徑,射線BM⊥AB,垂足為B,點C為射線BM上的一個動點(C與B不重合),連接AC交⊙O于D,過點D作⊙O的切線交BC于E.
(1)在C點運動過程中,當DEAB時(如圖2),求∠ACB的度數;
(2)在C點運動過程中,試比較線段CE與BE的大小,并說明理由;
(3)∠ACB在什么范圍內變化時,線段DC上存在點G,滿足條件BC2=4DG•DC(請寫出推理過程).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,已知AB為⊙O的直徑,CB切⊙O于B,CD切⊙O于D,交BA的延長線于E,若AB=3,ED=2,則BC的長為( 。
A.2B.3C.3.5D.4
⌒⌒

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,點C是以AB為直徑的⊙O上的一點,AD與過點C的切線互相垂直,垂足為點D.
(1)求證:AC平分∠BAD;
(2)若CD=1,AC=
10
,求⊙O的半徑長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,FH是⊙O的切線,切點為F,FHBC,連接AF交BC于E,∠ABC的平分線BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD.

查看答案和解析>>

同步練習冊答案