【題目】為了解某校九年級(jí)學(xué)生的理化實(shí)驗(yàn)操作情況,隨機(jī)抽查了 名同學(xué)實(shí)驗(yàn)操作的得分(滿分10分).根據(jù)獲取的樣本數(shù)據(jù),制作了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請根據(jù)相關(guān)信息,解答下列問題:
(1)扇形①的圓心角的大小是 ;
(2)求這個(gè)樣本的容量和樣本數(shù)據(jù)的平均數(shù);
(3)若該校九年級(jí)共有 名學(xué)生,估計(jì)該校理化實(shí)驗(yàn)操作得滿分的學(xué)生有多少人.
【答案】(1)36°;(2)40,8.3;(3)70人
【解析】
(Ⅰ)用1減去7、8、9、10分所占的扇形統(tǒng)計(jì)圖中的百分比得①所占的百分比,再用360°乘以①所占的百分算即可得解;
(2)根據(jù)題目信息知樣本容量為40,根據(jù)平均數(shù)的定義求解樣本數(shù)據(jù)的平均數(shù);
(3)用九年級(jí)總?cè)藬?shù)乘以滿分的人數(shù)所占的份數(shù)計(jì)算即可得解.
解::(Ⅰ)360°×(1-15%-27.5%-30%-17.5%)
=360°×10%
=36°,
故答案為:36°;
(2)根據(jù)題干信息,“隨機(jī)抽查了 名同學(xué)實(shí)驗(yàn)操作的得分”,可知樣本容量為40,
解樣本數(shù)據(jù)的平均數(shù):,
∴樣本數(shù)據(jù)的平均數(shù)為:8.3,
故:樣本容量為40,樣本數(shù)據(jù)的平均數(shù)為8.3;
(3)人,
答:估計(jì)該校理化實(shí)驗(yàn)操作得滿分的學(xué)生有70人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一盛有部分水的圓柱形小水杯放入事先沒有水的大圓柱形容器內(nèi),現(xiàn)用一注水管沿大容器內(nèi)壁勻速注水(如圖所示),則小水杯內(nèi)水面的高度h(cm)與注水時(shí)間t(min)的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“明天降雨的概率是80%”表示明天有80%的時(shí)間都在降雨
B.“拋一枚硬幣正面朝上的概率為 ”表示每拋2次就有一次正面朝上
C.“彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)
D.“拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在 附近
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出下列條件:① ;② ;③ ;④ 其中單獨(dú)能夠判定 的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與y軸交于點(diǎn),與x軸交于點(diǎn)B,,直線CD與y軸交于點(diǎn)D,與x軸交于點(diǎn),,直線AB與直線CD交于點(diǎn)Q,E為直線CD上一動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線,交直線AB于點(diǎn)M,交x軸于點(diǎn)N,連接AE、BE.
求直線AB、CD的解析式及點(diǎn)Q的坐標(biāo);
當(dāng)E點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的右側(cè),且的面積為時(shí),在y軸上有一動(dòng)點(diǎn)P,直線AB上有一動(dòng)點(diǎn)R,當(dāng)的周長最小時(shí),求點(diǎn)P的坐標(biāo)及周長的最小值.
在問的條件下,如圖2將繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到,使點(diǎn)M與點(diǎn)G重合,點(diǎn)N與點(diǎn)H重合,再將沿著直線AB平移,記平移中的為,在平移過程中,設(shè)直線與x軸交于點(diǎn)F,是否存在這樣的點(diǎn)F,使得為等腰三角形?若存在,求出此時(shí)點(diǎn)F的坐標(biāo);若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB,在燈光下,大華在D點(diǎn)處的影長DE=3米,沿BD方向行走到達(dá)G點(diǎn),DG=5米,這時(shí)大華的影長GH=5米.如果大華的身高為2米,求路燈桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O為AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com