附加題:已知:
|x1-1|+(x2-2)2+|x3-3|3+(x4-4)4+…+|x1999-1999|1999+(x2000-2000)2000=0
數(shù)學(xué)公式的值.

解:依題意得:x1-1=0,x2-2=0,x3-3=0…x1999-1999=0,x2000-2000=0,
∴x1=1,x2=2,x3=3,x4=4…x1999=1999,x2000=2000,
原式=,
=,
=,
=
分析:本題可根據(jù)非負(fù)數(shù)的性質(zhì)“幾個非負(fù)數(shù)相加,和為0,這幾個非負(fù)數(shù)的值都為0”解出x的值,再代入原式即可.
點(diǎn)評:本題考查了非負(fù)數(shù)的性質(zhì),初中階段有三種類型的非負(fù)數(shù):
(1)絕對值;
(2)偶次方;
(3)二次根式(算術(shù)平方根).
當(dāng)它們相加和為0時,必須滿足其中的每一項(xiàng)都等于0.根據(jù)這個結(jié)論可以求解這類題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

附加題:已知方程x-
1
x
=1
1
2
的解是x1=2,x2=-
1
2
;
x-
1
x
=2
2
3
的解是x1=3,x2=-
1
3
;
x-
1
x
=3
3
4
的解是x1=4,x2=-
1
4
;
=4
4
5
的解是x1=5,x2=-
1
5

問題:(1)寫出方程x-
1
x
=10
10
11
的解;
(2)觀察上述方程及其解,再設(shè)想x-
1
x
=n+
n
n+1
(n為正整數(shù))的解(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、附加題:已知x1,x2是方程x2-x-3=0的兩個根,求x12+x22的值.
解:根據(jù)根與系數(shù)的關(guān)系得x1+x2=1,x1-x2=-3
∴x12+x22=(x1+x22-2x1x2=12-2×(-3)=7.
請根據(jù)解題過程中體現(xiàn)的數(shù)學(xué)方法解決下面的問題:
已知:△ABC的兩邊AB、AC的長是關(guān)于x的方程x2-(2k+3)x+k2+3k+2=0的兩個實(shí)數(shù)根,第三邊BC的長為5.試問:k取何值時,△ABC是以BC為斜邊的直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:已知:
|x1-1|+(x2-2)2+|x3-3|3+(x4-4)4+…+|x1999-1999|1999+(x2000-2000)2000=0
1
x1x2
+
1
x2x3
+
1
x3x4
+…+
1
x1999x2000
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:已知x1,x2是方程x2-x-3=0的兩個根,求x12+x22的值.
根據(jù)根與系數(shù)的關(guān)系得x1+x2=1,x1-x2=-3
∴x12+x22=(x1+x22-2x1x2=12-2×(-3)=7.
請根據(jù)解題過程中體現(xiàn)的數(shù)學(xué)方法解決下面的問題:
已知:△ABC的兩邊AB、AC的長是關(guān)于x的方程x2-(2k+3)x+k2+3k+2=0的兩個實(shí)數(shù)根,第三邊BC的長為5.試問:k取何值時,△ABC是以BC為斜邊的直角三角形?

查看答案和解析>>

同步練習(xí)冊答案