(6)一輛寬6m的貨車要通過跨度為8m、拱高為4m的單行拋物線隧道(從正中通過),為了保證安全,車頂離隧道頂部至少要t.6m的距離,貨車的限高為多少?
(6)若將(6)中的單行道改為雙行道,即貨車必須從隧道中線的右側通過,貨車的限高應是多少?
(1)∵隧道跨度為7米,隧道的頂端坐標為(O,5),
∴8、B關于y軸對稱,
∴O8=OB=
1
2
8B=
1
2
×7=5,
∴點B的坐標為(5,5),
設拋物線頂點式形式y(tǒng)=8x2+5,
把點B坐標代入得,168+5=5,
解得8=-
1
5
,
所以,拋物線解析式為y=-
1
5
x2+5(-5≤x≤5);

(2)∵車的寬度為2米,車從正中通過,
∴x=1時,y=-
1
5
×12+5=
1五
5
,
∴貨車安全行駛裝貨的最大高度為
1五
5
-
1
2
=
1它
5
(米).
當x=2時,y=它,
故貨車限高為它-5.五=2.五(米).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖拋物線l1與x軸的交點的坐標為(-1,0)和(-5,0),與y軸的交點坐標為(0,2.5).
(1)求拋物線l1的解析式;
(2)拋物線l2與拋物線l1關于原點對稱,現(xiàn)有一身高為1.5米的人撐著傘與拋物線l2的對稱軸重合,傘面弧AB與拋物線l2重合,頭頂最高點C與傘的下沿AB在同一條直線上(如圖所示不考慮其他因素),如果雨滴下降的軌跡是沿著直線y=mx+b運動,那么不被淋到雨的m的取值范圍是多少?
(3)將傘的下沿AB沿著拋物線l2對稱軸上升10厘米至A1B1,A1B1比AB長8厘米,拋物線l2除頂點M不動外仍經過弧A1B1(其余條件不變),那么被雨淋到的幾率是擴大了還是縮小了,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知拋物線y=ax2+bx+c過點A(-1,0),且經過直線y=x-3與坐標軸的兩個交點B、C.
(1)求拋物線的表達式;
(2)若點M在第四象限內且在拋物線上,有OM⊥BC,垂足為D,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么這個函數(shù)的解析式為( 。
A.y=
1
3
x2+
2
3
x+1
B.y=
1
3
x2+
2
3
x-1
C.y=
1
3
x2-
2
3
x-1
D.y=
1
3
x2-
2
3
x+1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知關于x的方程kx2+(3k+1)x+3=0.
(1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根;
(2)若二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個交點的橫坐標均為整數(shù),且k為正整數(shù),求k值;
(3)在(2)的條件下,設拋物線的頂點為M,直線y=-2x+9與y軸交于點C,與直線OM交于點D.現(xiàn)將拋物線平移,保持頂點在直線OD上.若平移的拋物線與射線CD(含端點C)只有一個公共點,求它的頂點橫坐標的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(-4,0)、B(3,0)兩點,與y軸交于點C.

(1)求拋物線的函數(shù)關系式;
(2)點P是拋物上第三象限內的一動點,當點P運動到什么位置時,四邊形ABCP的面積最大?求出此時點P的坐標和四邊形ABCP的面積;
(3)點M在拋物線對稱軸上,點N是平面內一點,是否存在這樣的點M、N,使得以點M、N、B、C為頂點的四邊形是菱形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+x+c與x軸交于A,B兩點,與y軸交于點C,且點B的坐標為B(-2,0).
(1)求拋物線解析式;
(2)點P在拋物線上,且點P的橫坐標為x(-2<x<0),設△PBC的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;
(3)點M(m,n)是直線AC上的動點.設m=2-a,如果在兩個實數(shù)m與n之間(不包括m和n)有且只有一個整數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知過點(
3
2
,-
7
4
)的直線y=kx+b與x軸、y軸的交點分別為A、B,且經過第一、三、四象限,它與拋物線y=x2-4x+3只有一個公共點.
(1)求k的值;
(2)設拋物線的頂點為P,求點P到直線AB的距離d.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經過△ABC的三個頂點,已知BCx軸,點A在x軸的負半軸上,點C在y軸上,且AC=BC.
(1)求拋物線的對稱軸;
(2)求A點坐標并求拋物線的解析式;
(3)若點P在x軸下方且在拋物線對稱軸上的動點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P坐標;不存在,請說明理由.

查看答案和解析>>

同步練習冊答案