如圖,四邊形ABDC內(nèi)接于⊙O,若∠BOC=120°,則∠A度數(shù)為


  1. A.
    60°
  2. B.
    120°
  3. C.
    80°
  4. D.
    100°
A
分析:根據(jù)圓周角定理即可直接解答.
解答:∵∠BOC=120°,
∴∠A=∠BOC=×120°=60°.
故選A.
點評:本題考查的是圓周角定理,即在同圓或等圓,同弧或等弧所對的圓周角等于所對圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABDC中,△EDC是由△ABC繞頂點C旋轉(zhuǎn)40°所得,頂點A恰好轉(zhuǎn)到AB上一點E的位置,則∠1+∠2=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABDC、CDFE、EFHG都是正方形.
(1)求證:△ADF∽△HAD;
(2)利用上述結論,求證:∠AFB+∠AHB=45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABDC內(nèi)接于⊙O,若∠BOC=120°,則∠A度數(shù)為( 。
A、60°B、120°C、80°D、100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABDC中,∠D=∠ABD=90゜,點D為BD的中點,且OA平分∠BAC.
(1)求證:OC平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABDC中,∠ABD=∠ACD=90゜,BD=CD,求證:AD⊥BC.

查看答案和解析>>

同步練習冊答案