【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>

1x2+10x+21=0

2

3

4

5

63x(x+2)=5(x+2)

7(3x-2)2=(x+5)2

85x(x-3)-(x-3)(x+1)=0

【答案】1x1=-3,x2=-7;(2x1=1+,x2=-1+;(3x1=,x2=;(4;(5,;(6,;(7;(8,.

【解析】

1)方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來求解.

2)利用一元二次方程的求根公式解.

3)運(yùn)用公式法求解即可;

4)移項(xiàng)后發(fā)現(xiàn),方程中含有公因式(x-1),因此可用提取公因式法求解;

5)移項(xiàng)后發(fā)現(xiàn),方程中含有公因式(x-3),因此可用提取公因式法求解;

6)移項(xiàng)后發(fā)現(xiàn),方程中含有公因式(x+2),因此可用提取公因式法求解;

7)移項(xiàng)后,運(yùn)用平方差公式進(jìn)行因式分解求解即可;

8)提取公因式(x-3)進(jìn)行求解即可.

1x2+10x+21=0;

x+3)(x+7=0,

x+3=0x+7=0,

x1=-3x2=-7;

2)∵a=1,b=2,c=-5b2-4ac=24,

x=,

x1=1+x2=-1+;

3a=2,b=3c=-1,

b2-4ac=9+8=170,

x=

x1=,x2;

4

,

,,

;

5

,

,

,

63x(x+2)=5(x+2)

3x(x+2)-5(x+2)=0,

x+2(3x-5)=0

x+2=0,3x-5=0,

,;

7(3x-2)2=(x+5)2 ,

(3x-2)2-(x+5)2=0,

(3x-2+x+5)(3x-2-x-5)=0

(4x+3)(2x-7)=0

4x+3=0,2x-7=0,

,;

85x(x-3)-(x-3)(x+1)=0

(x-3)[5x-(x+1)]=0,

(x-3)(4x-1)=0,

x-3=0,4x-1=0,

,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市中心城區(qū)“小游園,微綠地”規(guī)劃已經(jīng)實(shí)施,武侯區(qū)某街道有一塊矩形空地進(jìn)入規(guī)劃試點(diǎn).如圖,已知該矩形空地長(zhǎng)為,寬為,按照規(guī)劃將預(yù)留總面積為的四個(gè)小矩形區(qū)域(陰影部分)種植花草,并在花草周圍修建三條橫向通道和三條縱向通道,各通道的寬度相等.

(1)求各通道的寬度;

(2)現(xiàn)有一工程隊(duì)承接了對(duì)這的區(qū)域(陰影部分)進(jìn)行種植花草的綠化任務(wù),該工程隊(duì)先按照原計(jì)劃進(jìn)行施工,在完成了的綠化任務(wù)后,將工作效率提高,結(jié)果提前天完成任務(wù),求該工程隊(duì)原計(jì)劃每天完成多少平方米的綠化任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,PBC上的一點(diǎn),連接AP,過D點(diǎn)作DHAPH,AB=, BC=4,當(dāng)CDH為等腰三角形時(shí),則BP=_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,解決材料后的問題:

材料一:對(duì)于實(shí)數(shù)x、y,我們將xy友好數(shù)fxy)表示,定義為:fx)=,例如1716的友好數(shù)為f17,16)=

材料二:對(duì)于實(shí)數(shù)x,用[x]表示不超過實(shí)數(shù)x的最大整數(shù),即滿足條件[x]≤x[x]+1,例如:

[1.5][1.6]=﹣2[0][0.7]0,[2.2][2.7]2,……

1)由材料一知:x2+21友好數(shù)可以用fx2+21)表示,已知fx2+2,1)=2,請(qǐng)求出x的值;

2)已知[a1]=﹣3,請(qǐng)求出實(shí)數(shù)a的取值范圍;

3)已知實(shí)數(shù)xm滿足條件x2[x],且m≥2x+,請(qǐng)求fxm2m)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB的中點(diǎn),ECD的中點(diǎn), 過點(diǎn)CCF//ABAE的延長(zhǎng)線于點(diǎn)F,連接BF

(1) 求證:DBCF;

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+3x軸交于點(diǎn)A(﹣10),B30).

1)求拋物線的解析式;

2)過點(diǎn)D0,)作x軸的平行線交拋物線于E,F兩點(diǎn),求EF長(zhǎng);

3)當(dāng)y時(shí),直接寫出x的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC的中點(diǎn),連接DE,過點(diǎn)AAGEDDE于點(diǎn)F,交CD于點(diǎn)G

1)證明:△ADG≌△DCE;(2)連接BF,證明:ABFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形中,中點(diǎn),點(diǎn)從點(diǎn)出發(fā)沿的路線勻速運(yùn)動(dòng),到點(diǎn)停止,點(diǎn)從點(diǎn)出發(fā),沿路線勻速運(yùn)動(dòng),、兩點(diǎn)同時(shí)出發(fā),點(diǎn)的速度是點(diǎn)速度的,當(dāng)點(diǎn)停止時(shí),點(diǎn)也同時(shí)停止運(yùn)動(dòng),設(shè)秒時(shí),正方形重疊部分的面積為,關(guān)于的函數(shù)關(guān)系如圖2所示,則

1)求正方形邊長(zhǎng);

2)求的值;

3)求圖2中線段所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線上的兩個(gè)動(dòng)點(diǎn)M、N,滿足,點(diǎn)PBC的中點(diǎn),連接AN、PM,若,則當(dāng)的值最小時(shí),線段AN的長(zhǎng)度為______

查看答案和解析>>

同步練習(xí)冊(cè)答案