【題目】已知ABCD,點(diǎn)M、N分別是AB、CD上兩點(diǎn),點(diǎn)GAB、CD之間,連接MGNG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點(diǎn)PCD下方一點(diǎn),MG平分∠BMP,ND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點(diǎn)EAB上方一點(diǎn),連接EM、EN,且GM的延長(zhǎng)線MF平分∠AME,NE平分∠CNG,2MEN+∠MGN105°,求∠AME的度數(shù).

【答案】1)∠AMG+∠CNG90°;(2)∠MGN+∠MPN90°;(3)∠AME50°.

【解析】

1)過(guò)GGHAB,依據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得到∠AMG+CNG的度數(shù);

2)過(guò)GGKAB,過(guò)點(diǎn)PPQAB,設(shè)∠GND=α,利用平行線的性質(zhì)以及角平分線的定義,求得∠MGN=30°+α,∠MPN=60°-α,即可得到∠MGN+MPN=30°+α+60°-α=90°

3)過(guò)GGKAB,過(guò)EETAB,設(shè)∠AMF=x,∠GND=y,利用平行線的性質(zhì)以及角平分線的定義,可得∠MEN=TEN-TEM=90°-y-2x,∠MGN=x+y,再根據(jù)2MEN+MGN=105°,即可得到290°-y-2x+x+y=105°,求得x=25°,即可得出∠AME=2x=50°

1)如圖1,過(guò)GGHAB

ABCD,

GHABCD,

∴∠AMG=∠HGM,∠CNG=∠HGN,

MGNG,

∴∠MGN=∠MGH+NGH=∠AMG+CNG90°;

2)如圖2,過(guò)GGKAB,過(guò)點(diǎn)PPQAB,設(shè)∠GNDα,

GKAB,ABCD,

GKCD,

∴∠KGN=∠GNDα

GKAB,∠BMG30°,

∴∠MGK=∠BMG30°,

MG平分∠BMP,ND平分∠GNP

∴∠GMP=∠BMG30°,

∴∠BMP60°

PQAB,

∴∠MPQ=∠BMP60°

ND平分∠GNP,

∴∠DNP=∠GNDα

ABCD,

PQCD,

∴∠QPN=∠DNPα,

∴∠MGN30°+α,∠MPN60°α,

∴∠MGN+MPN30°+α+60°α90°;

3)如圖3,過(guò)GGKAB,過(guò)EETAB,設(shè)∠AMFx,∠GNDy

AB,FG交于M,MF平分∠AME,

∴∠FME=∠FMA=∠BMGx,

∴∠AME2x

GKAB,

∴∠MGK=∠BMGx

ETAB,

∴∠TEM=∠EMA2x,

CDABKG,

GKCD

∴∠KGN=∠GNDy,

∴∠MGNx+y,

∵∠CND180°NE平分∠CNG,

∴∠CNG180°y,∠CNECNG90°y,

ETABCD,

ETCD

∴∠TEN=∠CNE90°y,

∴∠MEN=∠TEN﹣∠TEM90°y2x,∠MGNx+y,

2MEN+MGN105°

290°y2x+x+y105°

x25°,

∴∠AME2x50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是8×8的正方形網(wǎng)格,每個(gè)小方格都是邊長(zhǎng)為1的正方形,A、B是格點(diǎn)(網(wǎng)格線的交點(diǎn)).以網(wǎng)格線所在直線為坐標(biāo)軸,在網(wǎng)格中建立平面直角坐標(biāo)系xOy,使點(diǎn)A坐標(biāo)為(﹣2,4).

(1)在網(wǎng)格中,畫出這個(gè)平面直角坐標(biāo)系;

(2)在第二象限內(nèi)的格點(diǎn)上找到一點(diǎn)C,使A、B、C三點(diǎn)組成以AB為底邊的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則點(diǎn)C的坐標(biāo)是   ;并畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)有一點(diǎn)D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠A、∠B為銳角,且|tanA﹣1|+( ﹣cosB)2=0,則∠C=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點(diǎn),過(guò)圓上一點(diǎn)C作⊙O的切線CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD的頂點(diǎn)為A1,2),B-12),C-1,-2),D1,-2),點(diǎn)M和點(diǎn)N同時(shí)從E0,2)點(diǎn)出發(fā),沿四邊形的邊做環(huán)繞勻速運(yùn)動(dòng),M點(diǎn)以1單位/s的速度做逆時(shí)針運(yùn)動(dòng),N點(diǎn)以2單位/s的速度做順時(shí)針運(yùn)動(dòng),則點(diǎn)M和點(diǎn)N2017次相遇時(shí)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,CA=CB,CE=CD,ACB的頂點(diǎn)AECD的斜邊上,若AE=,AD=,則BC的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是∠ACB的平分線,∠EDC=25,∠DCE=25,∠B=70

1)試證明:DEBC;

2)求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,∠AOB=∠AOC,射線ODOB的反向延長(zhǎng)線.

1)射線OC的方向是   ;

2)若射線OE平分∠COD,求∠AOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案