【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點(diǎn),過圓上一點(diǎn)C作⊙O的切線CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM= .
【答案】
【解析】解:連接OM,OC,
∵OB=OC,且∠ABC=30°,
∴∠BCO=∠ABC=30°,
∵∠AOC為△BOC的外角,
∴∠AOC=2∠ABC=60°,
∵M(jìn)A,MC分別為圓O的切線,
∴MA=MC,且∠MAO=∠MCO=90°,
在Rt△AOM和Rt△COM中,
,
∴Rt△AOM≌Rt△COM(HL),
∴∠AOM=∠COM= ∠AOC=30°,
在Rt△AOM中,OA= AB=1,∠AOM=30°,
∴tan30°= ,即 = ,
解得:AM= .
所以答案是: .
【考點(diǎn)精析】本題主要考查了含30度角的直角三角形和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形中,,.
(1)如圖1.連接,若,求證:.
(2)如圖2,點(diǎn)分別在線段上,滿足,求證:;
(3)若點(diǎn)在的延長(zhǎng)線上,點(diǎn)在的延長(zhǎng)線上,如圖3所示,仍然滿足,請(qǐng)寫出與的數(shù)量關(guān)系,并給出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小明在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度 ,AB=10米,AE=15米.
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初202l屆數(shù)學(xué)組的老師們?yōu)榱伺臄z《燃燒我的數(shù)學(xué)》的MTV,從全年級(jí)選了m人(m>200)進(jìn)行隊(duì)列變換,現(xiàn)把m人排成一個(gè)10排的矩形隊(duì)列,每排人數(shù)相等,然后把這個(gè)矩形隊(duì)列平均分成A、B兩個(gè)隊(duì)列,如果從A隊(duì)列中抽調(diào)36人到B隊(duì)列,這樣A、B隊(duì)列都可以形成一個(gè)正方形隊(duì)列,則m的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=3x+3交x軸于點(diǎn)A;直線y=-x平移后經(jīng)過點(diǎn)B,交x軸于點(diǎn)C(7,0),另一直線y=kx-k交x軸于點(diǎn)D,交直線BC于點(diǎn)E,連接DB,BD⊥x軸.
(1)求直線BC的解析式和點(diǎn)B的坐標(biāo);
(2)若直線DE將△BDC的面積分為1:2的兩部分,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,點(diǎn)M、N分別是AB、CD上兩點(diǎn),點(diǎn)G在AB、CD之間,連接MG、NG.
(1)如圖1,若GM⊥GN,求∠AMG+∠CNG的度數(shù);
(2)如圖2,若點(diǎn)P是CD下方一點(diǎn),MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度數(shù);
(3)如圖3,若點(diǎn)E是AB上方一點(diǎn),連接EM、EN,且GM的延長(zhǎng)線MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長(zhǎng)為4 米.
(1)求新傳送帶AC的長(zhǎng)度.
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列式子的因式分解做法:
①x2-1=(x-1)(x+1);
②x3﹣1
=x3﹣x+x﹣1
=x(x2﹣1)+x﹣1
=x(x﹣1)(x+1)+(x﹣1)
=(x﹣1)[x(x+1)+1]
=(x﹣1)(x2+x+1);
③x4﹣1
=x4﹣x+x﹣1
=x(x3﹣1)+x﹣1
=x(x﹣1)(x2+x+1)+(x﹣1)
=(x﹣1)[x(x2+x+1)+1]
=(x﹣1)(x3+x2+x+1);
…
(1)模仿以上做法,嘗試對(duì)x5﹣1進(jìn)行因式分解;
(2)觀察以上結(jié)果,猜想xn﹣1= ;(n為正整數(shù),直接寫結(jié)果,不用驗(yàn)證)
(3)根據(jù)以上結(jié)論,試求45+44+43+42+4+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.(在括號(hào)中注明理由)
已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E.
證明:∵BE∥CD,(已知)
∴∠2=∠C,( )
又∵∠A=∠1,(已知)
∴AC∥ ,( )
∴∠2= ,( )
∴∠C=∠E(等量代換)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com