【題目】如圖,已知,直線分別交、于點,,,.
(1)已知,求;
(2)求證:平分;
(3)若,則的度數(shù)為______.
【答案】(1)20°;(2)證明見解析;(3)60°.
【解析】
(1)根據(jù)平行線的性質可得∠DFG=20°,再由FH⊥FB可求出∠DFH;
(2)延長BF至Q,可證明∠BFE=∠GFC,根據(jù)平行線的性質可得∠BFD=∠GFC,利用∠HFG+∠GFQ=∠HFD+∠DFB=90°可證明出結論;
(3)由得,從而求出∠DFB=30°,進而得出∠DFH=60°,由角的平分線的定義可得結論.
(1)∵AB∥CD,
∴∠DFB=∠B,
∵∠B=20°,
∴∠DFB=20°
∵FH⊥FB.
∴∠HFB=90°,即∠HFD+∠DFB=90°,
∴∠HFD =90°-∠DFB=90°-20°=70°;
(2)延長BF至Q,則∠BFE=∠GFQ,如圖,
∵HF⊥BF,
∴HF⊥FQ,
∴∠HFG+∠GFQ=90°,
∵AB∥CD,
∴∠B=∠DFB,
∵∠EFB=∠B,
∴∠DFB=∠BFE,
∴∠GFQ=∠DFB,
∵∠HFD+∠DFB=90°,
∴∠HFG=∠HFD,即FH平分∠GFD;
(3)∵AB∥CD,
∴∠DFB=∠B,
∵∠EFB=∠B,
∴∠DFB=∠EFB=∠B
∵
∴
∵,
∴∠DFB=60°,
∴∠BFE=30°,
∴∠GFQ=30°,
∵∠HFQ=90°,
∴∠HFG=90°-∠GFQ=90°-30°=60°.
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請結合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進貨單價;
(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B在拋物線L1上(點A與點B不重合),我們把這樣的兩拋物線L1、L2稱為“伴隨拋物線”,可見一條拋物線的“伴隨拋物線”可以有多條.
(1)拋物線L1:y=-x2+4x-3與拋物線L2是“伴隨拋物線”,且拋物線L2的頂點B的橫坐標為4,求拋物線L2的表達式;
(2)若拋物線y=a1(x-m)2+n的任意一條“伴隨拋物線”的表達式為y=a2(x-h)2+k,請寫出a1與a2的關系式,并說明理由;
(3)在圖②中,已知拋物線L1:y=mx2-2mx-3m(m>0)與y軸相交于點C,它的一條“伴隨拋物線”為L2,拋物線L2與y軸相交于點D,若CD=4m,求拋物線L2的對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用三個同(1)圖的長方形和兩個同(2)圖的長方形用兩種方式去覆蓋一個大的長方形,兩種方式為覆蓋的部分(陰影部分)的周長一樣,那么(1)圖中長方形的面積與(2)圖長方形的面積的比是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數(shù)字從左到右依次記為a,b,c,d,那么可以轉換為該生所在班級序號,其序號為a×23+b×22+c×21+d×20,如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為0×23+1×22+0×21+1×20=5,表示該生為5班學生.表示6班學生的識別圖案是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,位于第二象限的點在反比例函數(shù)的圖像上,點與點關于原點對稱,直線經(jīng)過點,且與反比例函數(shù)的圖像交于點.
(1)當點的橫坐標是-2,點坐標是時,分別求出的函數(shù)表達式;
(2)若點的橫坐標是點的橫坐標的4倍,且的面積是16,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了解九年級學生的身體素質測試情況,隨機抽取了該市九年級部分學生的身體素質測試成績作為樣本,按A(優(yōu)秀),B(良好),C(合格),D(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調查了多少名學生?
(2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中“A”部分所對應的圓心角的度數(shù).
(3)該市九年級共有8000名學生參加了身體素質測試,估計測試成績在良好以上(含良好)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)在這個變化中,自變量、因變量分別是 、 ;
(2)當點P運動的路程x=4時,△ABP的面積為y= ;
(3)求AB的長和梯形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com