【題目】如圖,在中,,平分交于點,是上一點,經(jīng)過,兩點的交于點,連接,作的平分線交于點,連接.
(1)求證:是的切線;
(2)若,,求線段的長.
【答案】(1)見解析;(2)AC=6.4
【解析】
(1)連接OE,根據(jù)同圓的半徑相等和角平分線可得:OE∥AC,則∠BEO=∠C=90°,解決問題;
(2)過A作AH⊥EF于H,根據(jù)三角函數(shù)先計算,證明△AEH是等腰直角三角形,則AE=AH=8,證明△AED∽△ACE,得到即可解決問題.
證明:(1)連接OE,
∵OE=OA,
∴∠OEA=∠OAE,
∵AE平分∠BAC,
∴∠OAE=∠CAE,
∴∠CAE=∠OEA,
∴OE∥AC,
∴∠BEO=∠C=90°,
∴BC是⊙O的切線;
(2)過A作AH⊥EF于H,
中,,
∵,
∴,
∵AD是⊙O的直徑,
∴∠AED=90°,
∵EF平分∠AED,
∴∠AEF=45°,
∴△AEH是等腰直角三角形,
∴,
∵,
∴,
∵,,
∴,
∴,
∴,
∴AC=6.4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點,與軸交于點,點是該拋物線上一點,且在第四象限內(nèi),連接.
(1)求拋物線的函數(shù)解析式,并寫出對稱軸;
(2)當(dāng)時,求點的坐標(biāo);
(3)在(2)的條件下,如果點是軸上一點,點是拋物線上一點,當(dāng)以點為頂點的四邊形是平行四邊形時,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=,E為CD邊上一點,將△BCE沿BE折疊,點C的對應(yīng)點為點F,連接AF,若,則CE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BF交AC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時,;④;⑤若,且,.其中正確的結(jié)論的個數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組的小穎想測量教學(xué)樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.8m,但當(dāng)她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請你幫她算一下,樹高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,CG⊥BA交BA的延長線于點G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過點B.
(1)在圖1中請你通過觀察、測量BF與CG的長度,猜想并寫出BF與CG滿足的數(shù)量關(guān)系,然后證明你的猜想;
(2)當(dāng)三角尺沿AC方向平移到圖2所示的位置時,一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點D,過點D作DE⊥BA于點E.此時請你通過觀察、測量DE、DF與CG 的長度,猜想并寫出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后證明你的猜想;
(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖3所示的位置(點F在線段AC上,且點F與點C不重合)時,(2)中的猜想是否仍然成立?(不用說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會活動,活動后,就活動的個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進(jìn)取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這個主題中任選兩個進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和是有公共頂點的直角三角形,,點為射線,的交點.
(1)如圖1,若和是等腰三角形,求證:;
(2)如圖2,若,問:(1)中的結(jié)論是否成立?請說明理.
(3)在(1)的條件下,,,若把繞點旋轉(zhuǎn),當(dāng)時,請直接寫出的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com