【題目】某中學(xué)舉辦運(yùn)動(dòng)會(huì),在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑得最快的一位選手與最慢的一位選手的跑步全過(guò)程(兩人都跑完了全程),其中x代表的是最快的選手全程的跑步時(shí)間,y代表的是這兩位選手之間的距離,下列說(shuō)不合理的是( )
A. 出發(fā)后最快的選手與最慢的選手相遇了兩次
B. 出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時(shí)短
C. 最快的選手到達(dá)終點(diǎn)時(shí),最慢的選手還有415米未跑
D. 跑的最慢的選手用時(shí)4′46″
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐標(biāo)系中描出各點(diǎn),畫(huà)出△ABC.
(2)求△ABC的面積;
(3)設(shè)點(diǎn)P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(1,6)和點(diǎn)M(m,n)都在反比例函數(shù)y= (x>0)的圖象上,
(1)k的值為;
(2)當(dāng)m=3,求直線AM的解析式;
(3)當(dāng)m>1時(shí),過(guò)點(diǎn)M作MP⊥x軸,垂足為P,過(guò)點(diǎn)A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,點(diǎn)P為△ABO的角平分線的交點(diǎn),若PN⊥PA交x軸于N,延長(zhǎng)OP交AB于M,寫(xiě)出AO,ON,PM之間的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個(gè)單位”為一次交換,如此這樣,連續(xù)經(jīng)過(guò)2016次變換后,正方形ABCD的對(duì)角線交點(diǎn)M的坐標(biāo)變?yōu)?/span> .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車(chē),平均速度為10km/h;乙乘汽車(chē),平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時(shí)間為x(h)(0≤x≤2)
(1)根據(jù)題意,填寫(xiě)下表:
時(shí)間x(h) 與A地的距離 | 0.5 | 1.8 | _____ |
甲與A地的距離(km) | 5 |
| 20 |
乙與A地的距離(km) | 0 | 12 |
|
(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫(xiě)出y1,y2關(guān)于x的函數(shù)解析式;
(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明從市場(chǎng)上買(mǎi)回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能?chē)梢粋(gè)容積為15立方米的無(wú)蓋長(zhǎng)方體運(yùn)輸箱,且此長(zhǎng)方體運(yùn)輸箱底面的長(zhǎng)比寬多2米,現(xiàn)已知購(gòu)買(mǎi)這種鐵皮每平方米需20元,問(wèn)購(gòu)買(mǎi)這張矩形鐵皮共花了多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)D是邊OA的中點(diǎn),連接CD,點(diǎn) E在第一象限,且DE⊥DC,DE=DC.以直線AB為對(duì)稱(chēng)軸的拋物線過(guò)C,E兩點(diǎn).
(1)求E點(diǎn)坐標(biāo);
(2)設(shè)拋物線的解析式為y=a(x﹣h)2+k,求a,h,k;
(3)點(diǎn)M為直線AB上一動(dòng)點(diǎn),點(diǎn)N為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)M,N,使得以點(diǎn)M,N,D,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com