【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

【答案】(1)見解析(2)12

【解析】

1)證明:連接AD

邊的中點(diǎn)

∴AD平分∠BAC

∵DE⊥AB于點(diǎn)E, DF⊥AC于點(diǎn)F

∴DE=DF …………………………4

2)解:,,

∴△ABC為等邊三角形.

,

,

,

∴BE=BD,

,∴BD=2,∴BC=2BD=4

的周長為12

1)根據(jù)DE⊥AB,DF⊥AC,AB=AC,求證∠B=∠C.再利用DBC的中點(diǎn),求證△BED≌△CFD即可得出結(jié)論.

2)根據(jù)AB=AC,∠A=60°,得出△ABC為等邊三角形.然后求出∠BDE=30°,再根據(jù)題目中給出的已知條件即可算出△ABC的周長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c,其圖象拋物線交x軸于點(diǎn)A(1,0),B(3,0),交y軸于點(diǎn)C,直線l過點(diǎn)C,且交拋物線于另一點(diǎn)E(點(diǎn)E不與點(diǎn)A、B重合).
(1)求此二次函數(shù)關(guān)系式;
(2)若直線l1經(jīng)過拋物線頂點(diǎn)D,交x軸于點(diǎn)F,且l1∥l,則以點(diǎn)C、D、E、F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出點(diǎn)E的坐標(biāo);若不能,請說明理由.
(3)若過點(diǎn)A作AG⊥x軸,交直線l于點(diǎn)G,連接OG、BE,試證明OG∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦運(yùn)動會,在1500米的項目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑得最快的一位選手與最慢的一位選手的跑步全過程(兩人都跑完了全程),其中x代表的是最快的選手全程的跑步時間,y代表的是這兩位選手之間的距離,下列說不合理的是( 。

A. 出發(fā)后最快的選手與最慢的選手相遇了兩次

B. 出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短

C. 最快的選手到達(dá)終點(diǎn)時,最慢的選手還有415米未跑

D. 跑的最慢的選手用時4′46″

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,則下列四個結(jié)論錯誤的是(
A.c>0
B.2a+b=0
C.b2﹣4ac>0
D.a﹣b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分,,則圖中共有等腰三角形( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).

(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠ABC=90°,AB=BC,D為斜邊AC延長線上一點(diǎn),過D點(diǎn)作BC的垂線交其延長線于點(diǎn)E,在AB的延長線上取一點(diǎn)F,使得BF=CE,連接EF.

(1)AB=2,BF=3,求AD的長度;

(2)GAC中點(diǎn),連接GF,求證:∠AFG+∠BEF=GFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到△DEF,則旋轉(zhuǎn)中心的坐標(biāo)是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

查看答案和解析>>

同步練習(xí)冊答案