【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數,現(xiàn)在只花費了4800元.
(1)求每張門票原定的票價;
(2)根據實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經過連續(xù)二次降價后降為324元,求平均每次降價的百分率.
【答案】(1)400(2)10%.
【解析】
試題(1)設每張門票的原定票價為x元,則現(xiàn)在每張門票的票價為(x-80)元,根據“按原定票價需花費6000元購買的門票張數,現(xiàn)在只花費了4800元”建立方程,解方程即可;
(2)設平均每次降價的百分率為y,根據“原定票價經過連續(xù)二次降價后降為324元”建立方程,解方程即可.
試題解析:(1)設每張門票的原定票價為x元,則現(xiàn)在每張門票的票價為(x-80)元,根據題意得
,
解得x=400.
經檢驗,x=400是原方程的根.
答:每張門票的原定票價為400元;
(2)設平均每次降價的百分率為y,根據題意得
400(1-y)2=324,
解得:y1=0.1,y2=1.9(不合題意,舍去).
答:平均每次降價10%.
科目:初中數學 來源: 題型:
【題目】如圖,是的平分線,是的平分線.
(1)如圖①,當是直角,時,__________,__________,__________;
(2)如圖②,當,時,猜想:的度數與的數量關系,并說明理由;
(3)如圖③,當,(為銳角)時,猜想:的度數與,有怎樣的數量關系?請寫出結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖將矩形ABCD的四個內角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12,EF=16,則邊AB的長是( 。
A. 8+6B. 12C. 19.2D. 20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據成績繪制成如下兩幅不完整的統(tǒng)計圖,請結合統(tǒng)計圖中的信息,回答下列問題:
(1)扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角為 度,并將條形統(tǒng)計圖補充完整.
(2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一本小說共頁,一位同學第一天看了全書的少6頁,第二天看了剩下的多6頁,第三天把剩下的全部看完.
①該同學第一天看了多少頁?
②該同學第二天看了多少頁?
③若,則第三天看了多少頁?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明、小華在一棟電梯樓前感慨樓房真高.小明說:“這樓起碼20層!”小華卻不以為然:“20層?我看沒有,數數就知道了!”小明說:“有本事,你不用數也能明白!”小華想了想說:“沒問題!讓我們來量一量吧!”小明、小華在樓體兩側各選A、B兩點,測量數據如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點在同一直線上)問:
(1)樓高多少米?
(2)若每層樓按3米計算,你支持小明還是小華的觀點呢?請說明理由.(參考數據:≈1.73,≈1.41,≈2.24)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).
(1)此時小強頭部E點與地面DK相距多少?
(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結果精確到0.1cm)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一種股票第一天的最高價比開盤價高0.3元,最低價比開盤價低0.2元;第二天的最高價開盤價高0.2元,最低價比開盤價低0.1元;第三天的最高價等于開盤價,最低價比開盤價低0.13元.計算每天最高價與最低價的差,以及這些差的平均值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于點D,AD=AB,點E為AC邊上的中點,點P為BC上一動點,則PA+PE的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com