【題目】如圖,矩形ABCD,兩條對(duì)角線相交于O點(diǎn),過點(diǎn)OAC的垂線EF,分別交ADBCE、F點(diǎn),連結(jié)CE,若OCcm,CD4cm,則DE的長(zhǎng)為(

A.cmB.5cmC.3cmD.2cm

【答案】C

【解析】

由矩形的性質(zhì)得出∠ADC90°,OAOC,AC2OC4,由勾股定理得出AD8,由線段垂直平分線的性質(zhì)得出AECE,設(shè)AECEx,則DE8x,在RtCDE中,由勾股定理得出方程,解方程即可.

解:∵四邊形ABCD是矩形,

∴∠ADC90°,OAOCAC2OC4,

AD8,

EFAC,

AECE,

設(shè)AECEx,則DE8x

RtCDE中,由勾股定理得:42+8x2x2,

解得:x5,

DE853cm);

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)EF分別在邊ABBC上,且AE=BF=1,CEDF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tanOCD=,④SODC=S四邊形BEOF中,正確的有_______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公司以10/千克的價(jià)格收購一批產(chǎn)品進(jìn)行銷售,經(jīng)過市場(chǎng)調(diào)查獲悉,日銷售量y(千克)是銷售價(jià)格x(元/千克)的一次函數(shù),部分?jǐn)?shù)據(jù)如表:

銷售價(jià)格x(元/千克)

10

15

20

25

30

日銷售量y(千克)

300

225

150

75

0

1)直接寫出yx之間的函數(shù)表達(dá)式;

2)求日銷售利潤(rùn)為150元時(shí)的銷售價(jià)格;

3)若公司每銷售1千克產(chǎn)品需另行支出a元(0a10)的費(fèi)用,當(dāng)20≤x≤25時(shí),公司的日獲利潤(rùn)的最大值為1215元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 平分線的交點(diǎn),過點(diǎn)O,分別交于點(diǎn),已知常數(shù)) ,設(shè)的周長(zhǎng)為,的周長(zhǎng)為,在下列圖像中,大致表示之間的函數(shù)關(guān)系式的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為軸于點(diǎn),反比例函數(shù)的圖像的一支分別交于點(diǎn),延長(zhǎng)交反比例函數(shù)的圖像的另一支于點(diǎn)E,已知D的縱坐標(biāo)為

1)求反比例函數(shù)的解析式及直線OA的解析式;

2)連接BC,已知,求

3)若在軸上有兩點(diǎn),將直線繞點(diǎn)旋轉(zhuǎn),仍與交于,能否構(gòu)成以為頂點(diǎn)的四邊形為菱形,如果能請(qǐng)求出的值,如果不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】、如圖,大樓AB的高為16米,遠(yuǎn)處有一塔CD,小李在樓底A處測(cè)得塔頂D處的仰角為60°,在樓頂B處測(cè)得塔頂D處的仰角為45°.其中A、C兩點(diǎn)分別位于BD兩點(diǎn)正下方,且AC兩點(diǎn)在同一水平線上,求塔CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(,m),則不等式組mx﹣2<kx+1<mx的解集為( 。

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,經(jīng)過三角形一頂點(diǎn)和此頂點(diǎn)所對(duì)邊上的任意一點(diǎn)的直線,均能把三角形分割成兩個(gè)三角形

1)如圖,在中,,過作一直線交,若分割成兩個(gè)等腰三角形,則的度數(shù)是______

2)已知在中,,過頂點(diǎn)和頂點(diǎn)對(duì)邊上一點(diǎn)的直線,把分割成兩個(gè)等腰三角形,則的最小度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1,A1,再過A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB3米,sinα,則水平鋼條A2B2的長(zhǎng)度為(  )

A. B. 2C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案