如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內兩條傘架所成的角∠BAC,當傘收緊時,結點D與點M重合,且點A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm
傘架 DE DF AE AF AB AC
長度 36 36 36 36 86 86
(1)求AM的長.
(2)當∠BAC=104°時,求AD的長(精確到1cm).
備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
(1)72cm(2)44cm
【解析】解:(1)由題意,得AM=AE+DE=36+36=72(cm).
∴AM的長為72cm。
(2)∵AP平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°。
過點E作EG⊥AD于G,
∵AE=DE=36,∴AG=DG,AD=2AG。
在△AEG中,∵∠AGE=90°,
∴AG=AE?cos∠EAG=36?cos52°=36×0.6157=22.1652。
∴AD=2AG=2×22.1652≈44(cm)。
∴AD的長約為44cm。
(1)根據(jù)AM=AE+DE求解即可。
(2)先根據(jù)角平分線的定義得出∠EAD=∠BAC=52°,再過點E作EG⊥AD于G,由等腰三角形的性質得出AD=2AG,然后在△AEG中,利用余弦函數(shù)的定義求出AG的長,進而得到AD的長度!
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
傘架 | DE | DF | AE | AF | AB | AC |
長度 | 36 | 36 | 36 | 36 | 86 | 86 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江紹興卷)數(shù)學(帶解析) 題型:解答題
如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內兩條傘架所成的角∠BAC,當傘收緊時,結點D與點M重合,且點A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm
傘架 | DE | DF | AE | AF | AB | AC |
長度 | 36 | 36 | 36 | 36 | 86 | 86 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com