【題目】某養(yǎng)殖戶的養(yǎng)殖成本逐年增長(zhǎng),已知第一年的養(yǎng)殖成本為12萬(wàn)元,第3年的養(yǎng)殖成本為17萬(wàn)元.設(shè)每年平均增長(zhǎng)的百分率為x,則下面所列方程中正確的是( )
A.12(1﹣x)2=17
B.17(1﹣x)2=12
C.17(1+x)2=12
D.12(1+x)2=17

【答案】D
【解析】解:設(shè)增長(zhǎng)率為x,根據(jù)題意得12(1+x)2=17,
故選D.
根據(jù)第一年的養(yǎng)殖成本×(1+平均年增長(zhǎng)率)2=第三年的養(yǎng)殖成本,列出方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在﹣3,6,﹣1中,最大的數(shù)比最小的數(shù)大(
A.2
B.3
C.4
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=5,AD=AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AFBF

1)求AEBE的長(zhǎng);

2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值.

3)如圖,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角αα180°),記旋轉(zhuǎn)中的△ABF△A′BF′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把拋物線y=-x2+2的圖象繞原點(diǎn)旋轉(zhuǎn)180°,所得的拋物線的函數(shù)關(guān)系是( )

A. y=x2+2B. y=-x2+2C. y=-x2-2D. y=x2-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,已知南瓜種植面積的增長(zhǎng)率是畝產(chǎn)量的增長(zhǎng)率的2倍,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解方程x22x20,原方程應(yīng)變形為(  )

A. (x+1)23B. (x1)23C. (x+1)21D. (x1)21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)教育局為了解今年九年級(jí)學(xué)生體育測(cè)試情況,隨機(jī)抽查了某班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>AB、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:

說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下

1)樣本中D級(jí)的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是 ;

2)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是

3)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)若該校九年級(jí)有500名學(xué)生,請(qǐng)你用此樣本估計(jì)體育測(cè)試中A級(jí)和B級(jí)的學(xué)生人數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.

(1)求證:△AEB≌△CFD;

(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動(dòng)圓Q的圓心從點(diǎn)C出發(fā),沿著CB方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著BA方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PB長(zhǎng)為半徑的⊙PAB、BC的另一個(gè)交點(diǎn)分別為E、D,連結(jié)ED、EQ

(1)判斷并證明EDBC的位置關(guān)系,并求當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)t的值;

(2)當(dāng)⊙PAC相交時(shí),設(shè)CQ,PAC 截得的弦長(zhǎng)為,求關(guān)于的函數(shù); 并求當(dāng)⊙Q過(guò)點(diǎn)B時(shí)⊙PAC截得的弦長(zhǎng);

(3)若⊙P與⊙Q相交,寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案