【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,G是上一動點,AG,DC的延長線交于點F,連接AC,AD,GC,GD.
(1)求證:∠FGC=∠AGD;
(2)若AD=6.
①當AC⊥DG,CG=2時,求sin∠ADG;
②當四邊形ADCG面積最大時,求CF的長.
【答案】(1)證明見解析;(2)①sin∠ADG=;②CF=6.
【解析】
(1)由垂徑定理可得CE=DE,CD⊥AB,由等腰三角形的性質和圓內(nèi)接四邊形的性質可得∠FGC=∠ADC=∠ACD=∠AGD;
(2)①如圖,設AC與GD交于點M,證△GMC∽△AMD,設CM=x,則DM=3x,在Rt△AMD中,通過勾股定理求出x的值,即可求出AM的長,可求出sin∠ADG的值;
②S四邊形ADCG=S△ADC+S△ACG,因為點G是上一動點,所以當點G在的中點時,△ACG的的底邊AC上的高最大,此時△ACG的面積最大,四邊形ADCG的面積也最大,分別證∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=6.
證明:(1)∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=DE,CD⊥AB,
∴AC=AD,
∴∠ADC=∠ACD,
∵四邊形ADCG是圓內(nèi)接四邊形,
∴∠ADC=∠FGC,
∵∠AGD=∠ACD,
∴∠FGC=∠ADC=∠ACD=∠AGD,
∴∠FGC=∠AGD;
(2)①如圖,設AC與GD交于點M,
∵,
∴∠GCM=∠ADM,
又∵∠GMC=∠AMD,
∴△GMC∽△AMD,
∴===,
設CM=x,則DM=3x,
由(1)知,AC=AD,
∴AC=6,AM=6﹣x,
在Rt△AMD中,
AM2+DM2=AD2,
∴(6﹣x)2+(3x)2=62,
解得,x1=0(舍去),x2=,
∴AM=6﹣=,
∴sin∠ADG===;
②S四邊形ADCG=S△ADC+S△ACG,
∵點G是上一動點,
∴當點G在的中點時,△ACG的底邊AC上的高最大,此時△ACG的面積最大,四邊形ADCG的面積也最大,∴GA=GC,
∴∠GAC=∠GCA,
∵∠GCD=∠F+∠FGC,
由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,
∴∠F=∠GCA,
∴∠F=∠GAC,
∴FC=AC=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2cm,點P從點A出發(fā),以1cm/s的速度沿AC向點C運動,到達點C停止;同時點Q從點A出發(fā),以2cm/s的速度沿AB﹣BC向點C運動,到達點C停止,設△APQ的面積為y(cm2),運動時間為x(s),則下列最能反映y與x之間函數(shù)關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+3與x軸、y軸分別交于點B、C;拋物線y=﹣x2+bx+c經(jīng)過B、C兩點,并與x軸交于另一點A.
(1)求該拋物線所對應的函數(shù)關系式;
(2)設P(x,y)是(1)所得拋物線上的一個動點,過點P作直線l⊥x軸于點M,交直線BC于點N.
①若點P在第一象限內(nèi).試問:線段PN的長度是否存在最大值?若存在,求出它的最大值及此時x的值;若不存在,請說明理由;
②求以BC為底邊的等腰△BPC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑DE⊥AB于點F,交BC于點 M,DE的延長線與AC的延長線交于點N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,點M是BC邊上的動點(不與B,C重合),點N是AM的中點,過點N作EF⊥AM,分別交AB,BD,CD于點E,K,F,設BM=x.
(1)AE的長為______(用含x的代數(shù)式表示);
(2)設EK=2KF,則的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以點M(0, )為圓心,以 長為半徑作⊙M交x軸于A,B兩點,交y軸于C,D兩點,連接AM并延長交⊙M于P點,連接PC交x軸于E.
(1)求出CP所在直線的解析式;
(2)連接AC,請求△ACP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連結OB1、OB2、OB3,那么圖中陰影部分的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,.P是底邊上的一個動點(P與B、C不重合),以P為圓心,為半徑的與射線交于點D,射線交射線于點E.
(1)若點E在線段的延長線上,設,求y關于x的函數(shù)關系式,并寫出x的取值范圍.
(2)連接,若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+1與反比例函數(shù)y=的圖象相交于點A、B,過點A作AC⊥x軸,垂足為點C(﹣2,0),連接AC、BC.
(1)求反比例函數(shù)的解析式;
(2)求S△ABC;
(3)利用函數(shù)圖象直接寫出關于x的不等式﹣x+1<的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com