【題目】如圖,在平面直角坐標系中,以點M(0, )為圓心,以 長為半徑作⊙M交x軸于A,B兩點,交y軸于C,D兩點,連接AM并延長交⊙M于P點,連接PC交x軸于E.
(1)求出CP所在直線的解析式;
(2)連接AC,請求△ACP的面積.
【答案】(1)直線CP的解析式為y=3x-3;(2)△ACP的面積=12ACPC=12×23×6=63.
【解析】
試題(1)要求CP所在的直線的解析式,就必須知道C,P兩點的坐標,有圓心M的坐標,有圓的半徑,那么可求出OC的,OM的長,直角三角形AMO中有AM,OM的值,就能求出OA,OB的長,那么P的橫坐標就求出來了,連接PB,那么OM是三角形APB的中位線,PB=2OM,已經(jīng)求出了OM的長,那么PB的長也就求出來了,這樣P點的坐標就求出來了,有了C,P的坐標,可根據(jù)待定系數(shù)法求出CP所在直線的解析式;
(2)求三角形ACP的面積實際上是求直角邊AC,PC的長,因為三角形ACP是個直角三角形,有斜邊AB的長,只要求出這個三角形中銳角的度數(shù),即可求出直角邊的長,在三角形AMO中,我們可求出∠AMO的度數(shù),根據(jù)圓周角定理,也就求出了∠P的度數(shù),有了銳角的度數(shù)和斜邊的長,直角邊就能求出來了,面積也就能求出來了.
試題解析: (1)連接PB,
∵PA是⊙M的直徑,
∴∠PBA=90°,
∵DC是⊙M的直徑,且垂直于弦AB,
∴DC平分弦AB,
在Rt△AMO中AM=2,OM=,
∴AO=OB=3,
又∵MO⊥AB,
∴PB∥MO,
∴PB=2OM=2,
∴P點坐標為(3,2),
∵CM=2,OM=,
∴OC=CMOM=,
∴C(0,),直線CP過C,P兩點,
設直線CP的解析式為y=kx+b(k≠0),
得到,
解得:,
∴直線CP的解析式為y=x;
(2)在Rt△AMO中,∠AMO=60°,
又∵AM=CM,
∴△AMC為等邊三角形,
∴AC=AM=2,∠MAC=60°
又∵AP為⊙M的直徑,
∴∠ACP=90°,∠APC=30°,
PC=AC=×2=6,
∴△ACP的面積=ACPC=×2×6=6.
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店老板到廠家選購、兩種品牌的羽絨服,品牌羽絨服每件進價比品牌羽絨服每件進價多元,若用元購進種羽絨服的數(shù)量是用元購進種羽絨服數(shù)量的倍.
(1)求、兩種品牌羽絨服每件進價分別為多少元?
(2)若品牌羽絨服每件售價為元,品牌羽絨服每件售價為元,服裝店老板決定一次性購進、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤不低于元,則最少購進品牌羽絨服多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB與拋物線C:y=ax2+2x+c相交于點A(﹣1,0)和點B(2,3)兩點.
(1)求拋物線C函數(shù)表達式;
(2)若點M是位于直線AB上方拋物線上的一動點,當的面積最大時,求此時的面積S及點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為( )
A.28B.24C.20D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,G是上一動點,AG,DC的延長線交于點F,連接AC,AD,GC,GD.
(1)求證:∠FGC=∠AGD;
(2)若AD=6.
①當AC⊥DG,CG=2時,求sin∠ADG;
②當四邊形ADCG面積最大時,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E為AB的中點,將△ADE沿DE翻折得到△FDE,延長EF交BC于G,FH⊥BC,垂足為H,連接BF、DG.以下結(jié)論:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正確的個數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了扎實推進精準扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、C、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息回答下面的問題:
(1)本次抽樣調(diào)查了多少戶貧困戶?
(2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;
(3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?
(4)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com