【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)四邊形MENF是菱形;理由見解析.
【解析】(1)由矩形的性質(zhì)得出AB=DC,∠A=∠D,再由M是AD的中點(diǎn),根據(jù)SAS即可證明△ABM≌△DCM;
(2)先由(1)得出BM=CM,再由已知條件證出ME=MF,EN、FN是△BCM的中位線,即可證出EN=FN=ME=MF,得出四邊形MENF是菱形.
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠D=90°,AB=DC,
∵M(jìn)是AD的中點(diǎn),
∴AM=DM,
在△ABM和△DCM中,,
∴△ABM≌△DCM(SAS);
(2)解:四邊形MENF是菱形;理由如下:
由(1)得:△ABM≌△DCM,
∴BM=CM,
∵E、F分別是線段BM、CM的中點(diǎn),
∴ME=BE=BM,MF=CF=CM,
∴ME=MF,
又∵N是BC的中點(diǎn),
∴EN、FN是△BCM的中位線,
∴EN=CM,F(xiàn)N=BM,
∴EN=FN=ME=MF,
∴四邊形MENF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF,請(qǐng)從下列三個(gè)條件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中選擇一個(gè)合適的條件,使AB∥ED成立,并給出證明.
(1)選擇的條件是 (填序號(hào))
(2)證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點(diǎn),△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點(diǎn)F.若∠BAC=35°,則∠BFC的大小是( )
A. 105° B. 110° C. 100° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系 ;
(2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個(gè)條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,四邊形ABCD的頂點(diǎn)與點(diǎn)E都是格點(diǎn).
(1)作出四邊形ABCD關(guān)于直線AC對(duì)稱的四邊形AB′CD′;
(2)求四邊形ABCD的面積;
(3)若在直線AC上有一點(diǎn)P,使得P到D、E的距離之和最小,請(qǐng)作出點(diǎn)P(請(qǐng)保留作圖痕跡),且求出PC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:EF∥AD,∠1=∠2,∠B=55°,求∠BDG的大小.
請(qǐng)同學(xué)們?cè)谙旅娴臋M線上把解答過程補(bǔ)充完整:
解:∵ EF//AD, (已知)
∴ ∠2=∠3, ( )
又∵ ∠1=∠2, (已知)
∴ ∠1=∠3, (等量代換)
∴ ,(內(nèi)錯(cuò)角相等,兩直線平行)
∴ ∠B+∠BDG=180°, ( )
∵ ∠B=55°, (已知)
∴ ∠BDG = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有 A、B、C 三點(diǎn),分別表示有理數(shù)-26,-10,10,動(dòng)點(diǎn) P 從 A 出發(fā),以每秒 1 個(gè) 單位的速度向終點(diǎn) C 移動(dòng),設(shè)點(diǎn) P 移動(dòng)時(shí)間為 t 秒.
(1)用含 t 的代數(shù)式表示 P 到點(diǎn) A 和點(diǎn)C 的距離:PA= ,PC=
(2)當(dāng)點(diǎn) P 運(yùn)動(dòng)到 B 點(diǎn)時(shí),點(diǎn) Q 從 A 點(diǎn)出發(fā),以每秒 3 個(gè)單位的速 度向 C 點(diǎn)運(yùn)動(dòng),Q 點(diǎn)到達(dá) C 點(diǎn)后,再立即以同樣的速度返回,當(dāng)點(diǎn) P 運(yùn)動(dòng)到點(diǎn) C 時(shí),P、Q 兩點(diǎn)運(yùn)動(dòng)停止,
①當(dāng) P、Q 兩點(diǎn)運(yùn)動(dòng)停止時(shí),求點(diǎn) P 和點(diǎn) Q 的距離;
②求當(dāng) t 為何值時(shí) P、Q 兩點(diǎn)恰好在途中相遇.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com