精英家教網 > 初中數學 > 題目詳情
如圖,AB、AC為⊙O的切線,B、C是切點,延長OB到D,使BD=OB,連接AD,如果∠DAC=78°,那么∠ADO等于( 。
A.70°B.64°C.62°D.51°

連接OC.
則OC=OB,AC=AB,OA=OA,△AOC≌△AOB.
∴∠CAO=∠BAO.
∵AB是⊙O的切線,
∴OB⊥AB.
∵BD=OB,
∴AB是線段OD的垂直平分線,OA=AD.
∴∠OAB=∠DAB=∠OAC=
1
3
×78°=26°.
∠ADO=180°-∠ABD-∠DAB=180°-90°-26°=64°.
故選B.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,切點為A、B,若OP=4,PA=2
3
,則∠AOB的度數為( 。
A.60°B.90°C.120°D.無法確定

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,⊙O交BC的中點于D,DE⊥AC于E,連接AD,則下列結論正確的個數是( 。
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切線.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,則∠DAB=______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦AC與AB成30°角,CD與⊙O切于C,交AB的延長線于D,
求證:BD=OB.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是( 。
A.R=4.8B.R=4.8或6≤R≤8
C.R=4.8或6≤R<8D.R=4.8或6<R≤8

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,矩形ABCD,AD=8,DC=6,在對角線AC上取一點O,以OC為半徑的圓切AD于E,交BC于F,交CD于G.
(1)求⊙O的半徑R;
(2)設∠BFE=α,∠CED=β,請寫出α,β,90°三者之間的關系式(只需寫出一個)并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,P是⊙O外一點,PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為(  )
A.18πcmB.16πcmC.20πcmD.24πcm

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知△ABC內接于⊙O,AE切⊙O于點A,BCAE.
(1)求證:△ABC是等腰三角形;
(2)設AB=10cm,BC=8cm,點P是射線AE上的點,若以A、P、C為頂點的三角形與△ABC相似,問這樣的點有幾個并求AP的長.

查看答案和解析>>

同步練習冊答案