若一次函數(shù)是常數(shù))與是常數(shù)),滿足,則稱這兩函數(shù)是對稱函數(shù)

1.當(dāng)函數(shù)是對稱函數(shù),求的值;

2.在平面直角坐標(biāo)系中,一次函數(shù)圖象與軸交于點(diǎn)、與軸交于點(diǎn),點(diǎn)與點(diǎn) 關(guān)于x軸對稱,過點(diǎn)、的直線解析式是,求證:函數(shù)是對稱函數(shù)

 

【答案】

 

1.由題意可知,解得…………………………………… 2分

2.A(,0),B(0,3),            ……………………………………  3分

   ∵點(diǎn)C與點(diǎn)B 關(guān)于x軸對稱,

   ∴C(0,-3),                        ……………………………………  5分

由題意可得                   ……………………………………  6分

        解得  故y=-2x-3,              ……………………………………  7分

      ∵2+(-2)=0,3+(-3)=0,

      ∴函數(shù)y=2x+3與y=kx+b是對稱函數(shù).            ……………………………………  8分

【解析】(1)根據(jù)對稱函數(shù)的定義求解

(2)求出、的坐標(biāo),即可求得過點(diǎn)、的直線解析式,從而得到結(jié)論

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、設(shè)y是z的一次函數(shù),y=k1z+b,(k1、b是常數(shù),k1≠0).z是x的正比例函數(shù)z=k2x(k2是常數(shù),k2≠0)
(1)說明y是x的什么函數(shù);
(2)若x=0時y=3,x=3時y=0,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•海滄區(qū)質(zhì)檢)若一次函數(shù)y=a1x+b1(a1≠0,a1、b1是常數(shù))與y=a2x+b2(a2≠0,a2、b2是常數(shù)),滿足a1+a2=0且b1+b2=0,則稱這兩函數(shù)是對稱函數(shù).
(1)當(dāng)函數(shù)y=mx-3與y=2x+n是對稱函數(shù),求m和n的值;
(2)在平面直角坐標(biāo)系中,一次函數(shù)y=2x+3圖象與x軸交于點(diǎn)A、與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B 關(guān)于x軸對稱,過點(diǎn)A、C的直線解析式是y=kx+b,求證:函數(shù)y=2x+3與y=kx+b是對稱函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆福建廈門海滄區(qū)九年級質(zhì)量檢查數(shù)學(xué)試卷(帶解析) 題型:解答題

若一次函數(shù)是常數(shù))與是常數(shù)),滿足,則稱這兩函數(shù)是對稱函數(shù)
【小題1】當(dāng)函數(shù)是對稱函數(shù),求的值;
【小題2】在平面直角坐標(biāo)系中,一次函數(shù)圖象與軸交于點(diǎn)、與軸交于點(diǎn),點(diǎn)與點(diǎn) 關(guān)于x軸對稱,過點(diǎn)的直線解析式是,求證:函數(shù)是對稱函數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一次函數(shù)是常數(shù))與是常數(shù)),滿足,則稱這兩函數(shù)是對稱函數(shù).

(1)當(dāng)函數(shù)是對稱函數(shù),求的值;

(2)在平面直角坐標(biāo)系中,一次函數(shù)圖象與軸交于點(diǎn)、與軸交于點(diǎn),點(diǎn)與點(diǎn) 關(guān)于x軸對稱,過點(diǎn)的直線解析式是,求證:函數(shù)是對稱函數(shù).

查看答案和解析>>

同步練習(xí)冊答案