如圖,已知拋物線與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

(1)若拋物線過點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點(diǎn)P,使CP+EP的值最小,求出點(diǎn)P的坐標(biāo).
(1)a=4;(2)①6;②P(-1,).

試題分析:(1)將點(diǎn)(-2,-2)代入拋物線的解析式,即可求出a的值;(2)①令y=0,代入拋物線解析式,即可求出相應(yīng)的x的值,從而求出點(diǎn)B、C的坐標(biāo),令x=0,代入拋物線解析式,可求出對應(yīng)的y的值,從而求出點(diǎn)E的坐標(biāo),然后利用三角形面積公式,即可求得△BCE的面積;②由于點(diǎn)B、C關(guān)于拋物線的對稱軸對稱,所以連接BE,交對稱軸于點(diǎn)P,此交點(diǎn)即為所求的位置,此時(shí),BE的值就是PC+PE的最小值,由于點(diǎn)B、E的坐標(biāo)已求出,所以可用待定系數(shù)法求得直線BE的解析式,從而求出點(diǎn)P的坐標(biāo).
試題解析:(1)∵點(diǎn)M(-2,-2)在拋物線上,
,
解得:;
(2)①由(1)得拋物線解析式為,
時(shí),得:,
解得:
∵點(diǎn)B在點(diǎn)C的左側(cè),
∴B(﹣4,0),C(2,0),
,
當(dāng)時(shí),得:,
∴E(0,-2),

;
②由拋物線解析式,得對稱軸為直線
根據(jù)C與B關(guān)于拋物線對稱軸直線對稱,連接BE,與對稱軸交于點(diǎn)P,即為所求,
設(shè)直線BE解析式為,
將B(﹣4,0),E(0,-2)代入得:,
解得:,
∴直線BE解析式為,
代入
得:,
∴P(﹣1,).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有兩個(gè)直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個(gè)直角三角形按圖1所示位置擺放,其中直角邊在同一直線上,且點(diǎn)與點(diǎn)重合。現(xiàn)固定,將以每秒1個(gè)單位長度的速度在上向右平移,當(dāng)點(diǎn)與點(diǎn)重合時(shí)運(yùn)動(dòng)停止。設(shè)平移時(shí)間為秒。

(1)當(dāng)       秒時(shí),邊恰好經(jīng)過點(diǎn);當(dāng)       秒時(shí),運(yùn)動(dòng)停止;
(2)在平移過程中,設(shè)重疊部分的面積為,請直接寫出的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)當(dāng)停止運(yùn)動(dòng)后,如圖2,為線段上一點(diǎn),若一動(dòng)點(diǎn)從點(diǎn)出發(fā),先沿方向運(yùn)動(dòng),到達(dá)點(diǎn)后再沿斜坡方向運(yùn)動(dòng)到達(dá)點(diǎn),若該動(dòng)點(diǎn)在線段上運(yùn)動(dòng)的速度是它在斜坡上運(yùn)動(dòng)速度的2倍,試確定斜坡的坡度,使得該動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)所用的時(shí)間最短。(要求,簡述確定點(diǎn)位置的方法,但不要求證明。)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=3x和y=2x分別與直線x=2相交于點(diǎn)A、B,將拋物線y=x2沿線段OB移動(dòng),使其頂點(diǎn)始終在線段OB上,拋物線與直線x=2相交于點(diǎn)C,設(shè)△AOC的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,如果拋物線分別向上、向右平移2個(gè)單位,那么新拋物線的解析式是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是
A.(1,3)B.(-1,-3)C.(-2,3)D.(-1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線上有一點(diǎn)M(x0,)位于軸下方.
(1)求證:此拋物線與x軸交于兩點(diǎn);
(2)設(shè)此拋物線與軸的交點(diǎn)為A(,0),B(,0),且<,求證:<<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線與y軸交于點(diǎn)(0,3).
(1)求拋物線的解析式;(2分)
(2)求拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo);(6分)
(3)① 當(dāng)x取什么值時(shí),y>0 ?
② 當(dāng)x取什么值時(shí),y的值隨x的增大而減。浚4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù),下列自變量取值范圍中y隨x增大而增大的是(    ).
A.x<2B.x<-1C.D.x>-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=(x+1)2-4的頂點(diǎn)坐標(biāo)是(   )
A.(1,4)B.(-1,4)C.(1,-4)D.(-1,-4)

查看答案和解析>>

同步練習(xí)冊答案