計算:(2+1)(22+1)(24+1)(28+1)(216+1)…(22n+1)+1的值.
考點:平方差公式
專題:
分析:原式變形后,利用平方差公式計算即可得到結(jié)果.
解答:解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)…(22n+1)+1
=(22-1)(22+1)(24+1)(28+1)(216+1)…(22n+1)+1
=(24-1)(24+1)(28+1)(216+1)…(22n+1)+1
=(28-1)(28+1)(216+1)…(22n+1)+1
=(216-1)(216+1)…(22n+1)+1
=…
=24n-1+1
=24n
點評:此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,AB∥CD,求證:∠B+∠D+∠F=∠E+∠G.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,AC=8,BC=6,P是AB邊上的一個動點(異于A、B兩點),過點P分別作AC、BC邊的垂線,垂足分別為M、N,設(shè)AP=x.
(1)在△ABC中,AB=
 

(2)當(dāng)x=
 
時,矩形PMCN的周長是14;
(3)當(dāng)x取何值時,矩形PMCN的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)通過計算,我們可以知道,方程x+
1
x
=2+
1
2
的解是x=2,x=
1
2
;方程x+
1
x
=3+
1
3
的解是x=3,x=
1
3
;方程x+
1
x
=4+
1
4
的解是x=4,x=
1
4
;…
(2)觀察上述方程及方程解的特征,請你猜想關(guān)于x的方程方程x+
1
x
=c+
1
c
(c≠0)的解是
 

(3)由上述方程可知關(guān)于x的方程方程x+
1
x+1
=a+
1
a+1
(a+1≠0)的解是
 

(4)試用上述方法解方程:(x2+x+2)2+1=
5
2
(x2+x+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列計算正確的是( 。
A、(2x+3y)2=4x2+9y2
B、(-c+
1
2
2=-c2+c+
1
4
C、(
1
3
m-
1
2
2=
1
9
m2-
1
3
m+
1
4
D、(2a+5b)2=4a2+10ab+25b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明家距學(xué)校m千米,一天他從家上學(xué)先以a千米/時的勻速跑步鍛煉前進,后以勻速b千米/時步行到達學(xué)校,共用n小時.下圖中能夠反映小明同學(xué)距學(xué)校的距離s(千米)與上學(xué)的時間t(小時)之間的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若正多邊形的邊心距與邊長的比為1:2,則這個正多邊形的邊數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-
1
4
x2+x+3與x軸交于A(-2,0),B(6,0)兩點,與y軸交于點C,頂點為點D(2,4),以點D為圓心,r為半徑作⊙D,若⊙D與直線BC相切,求⊙D的半徑r.

查看答案和解析>>

同步練習(xí)冊答案