【題目】如圖,拋物線的頂點(diǎn)為A(-3,-3),此拋物線交x軸于O、 B兩點(diǎn).

(1)求此拋物線的解析式.

(2)求△AOB的面積 .

(3)若拋物線上另有點(diǎn)P滿足S△POB=S△AOB,請求出P坐標(biāo).

【答案】⑴拋物線解析式為:y=,或y=;⑵9;⑶P(-3+3,3)或(-3-3,3).

【解析】試題分析:(1)設(shè)拋物線的解析式為y=a(x+3)23,然后把原點(diǎn)坐標(biāo)代入求出a即可;

(2)根據(jù)拋物線的對稱性確定B點(diǎn)坐標(biāo),然后根據(jù)三角形的面積公式求解;

(3)設(shè)P點(diǎn)坐標(biāo)為(x,y),根據(jù)SPOB=SAOB可計算出y,然后利用二次函數(shù)的解析式計算對應(yīng)的x的值,從而得到P點(diǎn)坐標(biāo).

試題解析:

(1)如圖,連接AB、OA.設(shè)拋物線的解析式為y=a(x+3)3,

把(0,0)代入得a×3 3=0,解得a=,

所以此拋物線的解析式為y=(x+3)3;

(2)∵拋物線的對稱軸為直線x=3,

B點(diǎn)坐標(biāo)為(6,0),

∴△AOB的面積=×6×3=9;

(3)設(shè)P點(diǎn)坐標(biāo)為(x,y),

SPOB=SAOB,

|y|×6=9,

解得y=3y=3(舍去),

(x+3)3=3,

解得x=33,x33,

P點(diǎn)坐標(biāo)為(33,3),(33,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:,其中|x|≤1,且x為整數(shù).

小海同學(xué)的解法如下:

解:原式=

=(x12x2+3

x22x1x2+3

=﹣2x+2

當(dāng)x=﹣1時,

原式=﹣(﹣1+2

2+24

請指出他解答過程中的錯誤(寫出相應(yīng)的序號,多寫不給分),并寫出正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD為矩形,以CD為直徑作半圓,矩形的另外三邊分別與半圓相切,沿著折痕DF折疊該矩形,使得點(diǎn)C的對應(yīng)點(diǎn)E落在AB邊上,若AD2,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一座拋物線形拱橋,正常水位橋下面寬度為米,拱頂距離水平面米,如圖建立直角坐標(biāo)系,若正常水位時,橋下水深米,為保證過往船只順利航行,橋下水面寬度不得小于米,則當(dāng)水深超過多少米時,就會影響過往船只的順利航行(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A0,3),B34),C2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度).

1)作出ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)90°后得到的A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

2)作出ABC關(guān)于原點(diǎn)O成中心對稱的A2B2C2,并直接寫出B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個動點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AC分別是一次函數(shù)y=﹣x+3的圖象與y軸、x軸的交點(diǎn),點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)對稱,二次函數(shù)yx2+bx+c的圖象經(jīng)過點(diǎn)B,且該二次函數(shù)圖象上存在一點(diǎn)D,使四邊形ABCD能構(gòu)成平行四邊形.

1)求二次函數(shù)的表達(dá)式;

2)動點(diǎn)P從點(diǎn)A到點(diǎn)D,同時動點(diǎn)Q從點(diǎn)C到點(diǎn)A都以每秒1個單位的速度運(yùn)動,設(shè)運(yùn)動時間為t秒.

①當(dāng)t為何值時,有PQAC?

②當(dāng)t為何值時,四邊形PDCQ的面積最小?此時四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的漢字書寫能力,某學(xué)校連續(xù)舉辦了幾屆漢字聽寫大賽,今年經(jīng)過層層選拔,確定了參加決賽的選手,決賽的比賽規(guī)則是每正確聽寫出1個漢字得2分,滿分是100分,下面是根據(jù)決賽的成績繪制出的不完整的頻數(shù)分布表、扇形統(tǒng)計圖和頻數(shù)分布直方圖.

請結(jié)合圖表完成下列各題

1)表中a的值為______,并把頻數(shù)分布直方圖補(bǔ)充完整;

2)學(xué)校想利用頻數(shù)分布表估計這次決賽的平均成績,請你直接寫出平均成績;

3)通過與去年的決賽成績進(jìn)行比較,發(fā)現(xiàn)今年各類人數(shù)的中位數(shù)有了顯著提高,提高了15%以上,求去年各類人數(shù)的中位數(shù)最高可能是多少?

4)想從A類學(xué)生的3名女生和2名男生中選出兩人進(jìn)行培訓(xùn),直接寫出選中1名男生和1名女生的概率是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)FABCD的對角線AC上,過點(diǎn)F、B分別作AB、AC的平行線相交于點(diǎn)E,連接BF,∠ABF=∠FBC+FCB

1)求證:四邊形ABEF是菱形;

2)若BE5AD8,sinCBE,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案