【題目】已知:ABC在坐標平面內(nèi),三個頂點的坐標分別為A0,3),B3,4),C2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度).

1)作出ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的A1B1C1,并直接寫出C1點的坐標;

2)作出ABC關于原點O成中心對稱的A2B2C2,并直接寫出B2的坐標.

【答案】1)圖見解析,C1(﹣1,1);(2))圖見解析,B2(﹣3,﹣4).

【解析】

1)利用旋轉(zhuǎn)的性質(zhì)得出對應點位置進而得出答案;

2)利用關于原點對稱點的性質(zhì)得出對應點位置進而得出答案.

解:(1)如圖所示:A1B1C1,即為所求,C1(﹣1,1);

2)如圖所示:A2B2C2,即為所求,B2(﹣3,﹣4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,用尺規(guī)作圖的方法作出射線AD和直線EF,設ADEF于點O,連結(jié)BE、OC.下列結(jié)論中,不一定成立的是(  )

A.AEBEB.EF平分∠AEBC.OAOCD.ABBE+EC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點的中點,點是線段的延長線上的一動點,連接,過點的平行線,與線段的延長線交于點,連接

求證:四邊形是平行四邊形.

,,則在點的運動過程中:

①當________時,四邊形是矩形,試說明理由;

②當________時,四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 今年五一假期,某教學活動小組組織一次登山活動,他們從山腳下A點出發(fā)沿斜坡AB到達B點,再從B點沿斜坡BC到達山頂C點,路線如圖所示,斜坡AB的長為200米,斜坡BC的長為200米,坡度是11,已知A點海拔121米,C點海拔721

1)求B點的海拔;

2)求斜坡AB的坡度;

3)為了方便上下山,若在AC之間架設一條鋼纜,求鋼纜AC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉(zhuǎn)60°到AQ,連接PQ、QC.

(1)求證:PB=QC;

(2)若PA=3,PB=4,∠APB=150°,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的頂點為A(-3,-3),此拋物線交x軸于O、 B兩點.

(1)求此拋物線的解析式.

(2)求△AOB的面積 .

(3)若拋物線上另有點P滿足S△POB=S△AOB,請求出P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,電信部門計劃修建一條連接BC兩地電纜,測量人員在山腳A處測得B、C兩處的仰角分別是37°45°,在B處測得C處的仰角為67°.已知C地比A地髙330米(圖中各點均在同一平面內(nèi)),求電纜BC長至少多少米?

(精確到米,參考數(shù)據(jù):sin37°≈,tan37°≈,sin67°≈tan67°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于兩點(A點在B點的左邊),與軸交于點

1)如圖1,若△ABC為直角三角形,求的值;

2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、Q為頂點的四邊形是平行四邊形,求點的坐標;

3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若=14 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知,對應的坐標如下,請利用學過的變換(平移、旋轉(zhuǎn)、軸對稱)知識經(jīng)過若干次圖形變化,使得點A與點E重合、點B與點D重合,寫出一種變化的過程_____.

查看答案和解析>>

同步練習冊答案