【題目】在平面直角坐標(biāo)系中,拋物線yx2沿x軸正方向平移后經(jīng)過點(diǎn)A(x1,y2),B(x2,y2),其中x1,x2是方程x2﹣2x=0的兩根,且x1>x2,
(1)如圖.求A,B兩點(diǎn)的坐標(biāo)及平移后拋物線的解析式;
(2)平移直線AB交拋物線于M,交x軸于N,且,求△MNO的面積;
(3)如圖,點(diǎn)C為拋物線對(duì)稱軸上頂點(diǎn)下方的一點(diǎn),過點(diǎn)C作直線交拋物線于E、F,交x軸于點(diǎn)D,探究的值是否為定值?如果是,求出其值;如果不是,請(qǐng)說明理由.
【答案】(1)點(diǎn)A坐標(biāo)為(2,0),點(diǎn)B坐標(biāo)為(0,1),;(2)12或28;(3)為定值,定值為1.
【解析】
(1)解方程x2﹣2x=0得x1=2,x2=0.即可求得點(diǎn)A坐標(biāo)為(2,0),拋物線解析式為 ,把x=0代入拋物線解析式得y=1,即可得點(diǎn)B坐標(biāo)為(0,1);(2)如圖,過M作MH⊥x軸,垂足為H,由AB∥MN,即可得△ABO∽△MHN,根據(jù)相似三角形的性質(zhì)可得,由此求得MH=4,HN=8,將y=4代入拋物線求得x1=﹣2,x2=6,所以M1(﹣2,4),N1(6,0),M2(6,4),N2(14,0),由此求得△MNO的面積即可;(3)設(shè)C(2,m),求得CD解析式為y=kx+m﹣2k,令y=0得kx+m﹣2k=0,由此求得點(diǎn)D為(,0);把CD的解析式與拋物線的解析式聯(lián)立,消去y得,kx+m﹣2k=(x﹣2)2.化簡得x2﹣4(k+1)x+4﹣4m+8k=0,由根與系數(shù)關(guān)系得,x1+x2=4k+4,x1x2=4﹣4m+8k.過E、F分別作EP⊥CA于P,FQ⊥CA于Q,由AD∥EP,AD∥FQ,可得= =(﹣2)×==1,由此可得為定值,定值為1.
(1)解方程x2﹣2x=0得x1=2,x2=0.
∴點(diǎn)A坐標(biāo)為(2,0),拋物線解析式為 .
把x=0代入拋物線解析式得y=1.
∴點(diǎn)B坐標(biāo)為(0,1).
(2)如圖,過M作MH⊥x軸,垂足為H
∵AB∥MN
∴△ABO∽△MHN
∴
∴MH=4,HN=8
將y=4代入拋物線
可得x1=﹣2,x2=6
∴M1(﹣2,4),N1(6,0),M2(6,4),N2(14,0),
∴
(3)設(shè)C(2,m),設(shè)直線CD為y=kx+b
將C(2,m)代入上式,m=2k+b,即b=m﹣2k.
∴CD解析式為y=kx+m﹣2k,
令y=0得kx+m﹣2k=0,
∴點(diǎn)D為(,0)
聯(lián)立,
消去y得,kx+m﹣2k=(x﹣2)2.
化簡得,x2﹣4(k+1)x+4﹣4m+8k=0
由根與系數(shù)關(guān)系得,x1+x2=4k+4,x1x2=4﹣4m+8k.
過E、F分別作EP⊥CA于P,FQ⊥CA于Q,
∴AD∥EP,AD∥FQ,
∴=
=(﹣2)×
=
=1
∴為定值,定值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:①二次三項(xiàng)式ax2+bx+c的最大值為4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的兩根之和為﹣2;④使y≤3成立的x的取值范圍是x≥0;⑤拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,則y1<y2其中正確的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+4與雙曲線y=(x>0)只有一個(gè)交點(diǎn),將直線y=-x+4向上平移1個(gè)單位后與雙曲線y=(x>0)相交于A,B兩點(diǎn),如圖,求A,B兩點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批A、B兩型號(hào)節(jié)能燈,已知2只A型節(jié)能燈和3只B型節(jié)能燈共需31元;1只A型節(jié)能燈和2只B型節(jié)能燈共需19元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號(hào)的節(jié)能燈共100只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn).
(1)求的值及點(diǎn)的坐標(biāo);
(2)過點(diǎn)作 軸交反比例函數(shù)的圖象于點(diǎn),求點(diǎn)D的坐標(biāo)和的面積;
(3)觀察圖象,寫出當(dāng)x>0時(shí)不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知:Rt△EFP和矩形ABCD如圖①擺放(點(diǎn)P與點(diǎn)B重合),點(diǎn)F,B(P),C在同一條直線上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°。如圖②,△EFP從圖①的位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s;EP與AB交于點(diǎn)G.同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s。過Q作QM⊥BD,垂足為H,交AD于M,連接AF,PQ,當(dāng)點(diǎn)Q停止運(yùn)動(dòng)時(shí),△EFP也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問題:
(1)當(dāng) t 為何值時(shí),PQ∥BD?
(2)設(shè)五邊形 AFPQM 的面積為 y(cm2),求 y 與 t 之間的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻 t,使?若存在,求出 t 的值;若不存在,請(qǐng)說明理由;
(4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻 t,使點(diǎn)M在PG的垂直平分線上?若存在,求出 t 的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)試說明拋物線與直線有兩個(gè)交點(diǎn);
(3)已知點(diǎn)T(t,0),且-1≤t≤1,過點(diǎn)T作x軸的垂線,與拋物線交于點(diǎn)P,與直線交于點(diǎn)Q,當(dāng)0<m≤3時(shí),求線段PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC. (1)若∠A=36,在△ABC中畫一條線段,能得到2個(gè)等腰三角形(不包括△ABC),這2個(gè)等腰三角形的頂角的度數(shù)分別是_____;(2)若∠A≠36, 當(dāng)∠A=_____時(shí),在等腰△ABC中畫一條線段,能得到2個(gè)等腰三角形(不包括△ABC).(寫出兩個(gè)答案即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com