【題目】將△ABC繞著點(diǎn)C順時針方向旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°,∠B′=110°,則∠BCA′的度數(shù)是

【答案】80°
【解析】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB, ∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°﹣110°﹣40°=30°,
∴∠ACB=30°,
∵將△ABC繞著點(diǎn)C順時針旋轉(zhuǎn)50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°,
故答案是:80°.
【考點(diǎn)精析】利用旋轉(zhuǎn)的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M( , ),以點(diǎn)M為圓心,OM長為半徑作⊙M.使⊙M與直線OM的另一交點(diǎn)為點(diǎn)B,與x軸,y軸的另一交點(diǎn)分別為點(diǎn)D,A(如圖),連接AM.點(diǎn)P是 上的動點(diǎn).
(1)寫出∠AMB的度數(shù);
(2)點(diǎn)Q在射線OP上,且OPOQ=20,過點(diǎn)Q作QC垂直于直線OM,垂足為C,直線QC交x軸于點(diǎn)E. ①當(dāng)動點(diǎn)P與點(diǎn)B重合時,求點(diǎn)E的坐標(biāo);
②連接QD,設(shè)點(diǎn)Q的縱坐標(biāo)為t,△QOD的面積為S.求S與t的函數(shù)關(guān)系式及S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).

(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,且.

(1)的值;

(2)①在軸的正半軸上存在一點(diǎn),使,求點(diǎn)的坐標(biāo);

②在坐標(biāo)軸上一共存在多少個點(diǎn),使成立?請直接寫出符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C為半圓上一點(diǎn),AD平分∠CAB交⊙O于點(diǎn)D
(1)求證:OD∥AC;
(2)若AC=8,AB=10,求AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個直角三角形的兩邊的長是方程x2﹣7x+12=0的兩個根,則此直角三角形的斜邊中線長為

查看答案和解析>>

同步練習(xí)冊答案