在梯形ABCD中,AD∥BC,BA⊥AC,∠ABC = 450,AD = 2,BC = 6,以BC所在直線為x軸,建立如圖所示的平面直角坐標系,點A在y軸上.

(1)求過A、D、C三點的拋物線的解析式;

(2)求△ADC的外接圓的圓心M的坐標,并求⊙M的半徑;

(3)E為拋物線對稱軸上一點,F(xiàn)為y軸上一點,求當ED+EC+FD+FC最小時,EF的長;

(4)設Q為射線CB上任意一點,點P為對稱軸左側(cè)拋物線上任意一點,問是否存在這樣的點P、Q,使得以P、Q、C為頂點的三角形與△ADC相似?若存在,直接寫出點P、Q的坐標,若不存在,則說明理由.

(1)由題意知C(3,0)、A(0,3).

如圖1,過D作x軸垂線,由矩形性質(zhì)得D(2,3).

由拋物線的對稱性可知拋物線與x軸另一交點為(﹣1,0).

設拋物線的解析式為y=a(x+1)(x﹣3).

將(0,3)代入得a=﹣1,所以

(2)由外接圓知識知M為對稱軸與AC中垂線的交點.

由等腰直角三角形性質(zhì)得OM平分∠AOC,即yOM=x,

∴M(1,1).

連MC得MC=,即半徑為

(3)如圖2,

由對稱性可知:當ED+EC+FD+FC最小時,E為對稱軸與AC交點,F(xiàn)為BD與y軸交點,

∵∠B=45°,∠AOB=90°,

∴AO=BO=3,故B點坐標為:(﹣3,0),

再利用D(2,3),代入y=ax+b,得:

解得:,

故BD直線解析式為:,

當x=0,y=,根據(jù)對稱軸為直線x=1,則y=2,

故F(0,)、E(1,2),

EF===

(4)可得△ADC中,AD=2,AC=,DC=

假設存在,顯然∠QCP<90°,則∠QCP=45°或∠QCP=∠CAD.

如圖3,

當∠QCP=45°時,OR=OC=3,

則R點坐標為(0,﹣3),將C,R代入y=ax+b得出:

,

解得:

這時直線CP的解析式為y=x﹣3,同理可得另一解析式為:y=﹣x+3.

當直線CP的解析式為y=x﹣3時,

,

解得:

可求得P(﹣2,﹣5),

故PC==

設CQ=x,則

解得:x=或x=15.

∴Q (,0)或(﹣12,0).

當y=﹣x+3即P與A重合時,CQ=y,則=,

=,或=,

解得CQ=2或9,

故Q (1,0)或(﹣6,0).

如圖4,

當∠QCP=∠ACD時,設CP交y軸于H,連接ED,則ED⊥AC,

∴DE=,EC=

易證:△CDE∽△CHQ,

所以=,

∴HO=

可求HC的解析式為

聯(lián)解

得P,PC=

設CQ=x,知,

∴x=或x=,

∴Q

同理當H在y軸正半軸上時,HC的解析式為

∴P’ ,

∴PC=

,

∴CQ=,所以Q

綜上所述,P1(﹣2,﹣5)、Q1(,0)或(﹣12,0);P2(0,3)、Q2(1,0)或(﹣6,0);P3、Q3;P4、Q4

【解析】

試題分析:(1)過D作x軸垂線,由拋物線的對稱性可知拋物線與x軸另一交點為(﹣1,0).再根據(jù)交點式即可求出過A、D、C三點的拋物線的解析式;

(2)由外接圓知識知M為對稱軸與AC中垂線的交點.由等腰直角三角形性質(zhì)可得M點的坐標,連MC得MC=,即為半徑;

(3)由對稱性可知:當ED+EC+FD+FC最小時,E為對稱軸與AC交點,F(xiàn)為BD與y軸交點,再根據(jù)待定系數(shù)法求出BD直線解析式,從而得到E,F(xiàn)的坐標,再根據(jù)兩點坐標公式即可求得EF的長;

(4)先求出直線CP的解析式為y=x﹣3或y=﹣x+3,再分情況討論求得以P、Q、C為頂點的三角形與△ADC相似時點P、Q的坐標

考點:二次函數(shù)綜合題

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2014-2015學年浙江省溫州市九年級上學期期中測試數(shù)學試卷(解析版) 題型:解答題

在△ABC中,邊BC的長與BC邊上的高線長之和為20.

(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關系式。并寫出自變量X的取值范圍。

(2)當BC的長為多少時,△ABC的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年云南省劍川縣九年級上學期第三次統(tǒng)一模擬考試數(shù)學試卷(解析版) 題型:選擇題

下列運算正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年四川省廣安市岳池縣白廟責任區(qū)九年級12月聯(lián)考數(shù)學試卷(解析版) 題型:填空題

如果關于x的二次函數(shù)y=x2-2x+k與x軸只有1個交點,則k=_________。

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年四川省廣安市岳池縣白廟責任區(qū)九年級12月聯(lián)考數(shù)學試卷(解析版) 題型:選擇題

若n(n≠0)是關于x的方程x2+mx+3n=0的一個根,則m+n的值是( )

A.-3 B.-1 C.1 D.3

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年湖南省長沙麓山國際等四校九年級上學期第三次訓練數(shù)學試卷(解析版) 題型:解答題

如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.

(1)求證:△BEF∽△CDF;

(2)求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年湖南省長沙麓山國際等四校九年級上學期第三次訓練數(shù)學試卷(解析版) 題型:填空題

近期隨著國家抑制房價新政策的出臺,某樓盤房價連續(xù)兩次下跌,由原來的每平方米10000元降至每平方米8100元,設每次降價的百分率相同,則降價百分率為 .

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年新疆巴州蒙古族中學八年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

(6分)如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年陜西省西安市七年級上學期期末考試數(shù)學試卷(解析版) 題型:選擇題

把351000用科學記數(shù)法表示,正確的是( )。

(A)0.351×106 (B)3.51×105 (C)3.51×106 (D)35.1×104

查看答案和解析>>

同步練習冊答案