在平行四邊形ABCD中,將△ABC沿AC對折,使點B落在B′處,A B′和CD相交于點O.求證:OA=OC.


       證明:∵△AB′C是由△ABC沿AC對折得到的圖形,

∴∠BAC=∠B′AC,

∵在平行四邊形ABCD中,AB∥CD,

∴∠BAC=∠DCA,

∴∠DCA=∠B′AC,

∴OA=OC.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


如圖,△ABC中,D,E分別是邊AB,AC的中點.若DE=2,則BC=( 。

 

A.

2

B.

3

C.

4

D.

5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


學校為了考察我校七年級同學的視力情況,從七年級的10個班共540名學生中,每班抽取了5名進行分析,在這個問題中,總體是                              ,個體是                        ,樣本是                     ,樣本的容量是       

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


菱形ABCD中,若對角線長AC=8cm,BD=6cm,則邊長AB=   cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算:(﹣2+﹣2sin45°﹣|1﹣|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


2的相反數(shù)是( 。

    A.                          B.                       ﹣2 C.                       2     D.  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


關于反比例函數(shù)y=的圖象,下列說法正確的是( 。

    A.圖象經(jīng)過點(1,1)                          B. 兩個分支分布在第二、四象限

    C.兩個分支關于x軸成軸對稱                D.  當x<0時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


平面直角坐標系中,四邊形ABCD是菱形,點C的坐標為(﹣3,4),點A在x軸的正半軸上,O為坐標原點,連接OB,拋物線y=ax2+bx+c經(jīng)過C、O、A三點.

(1)直接寫出這條拋物線的解析式;

(2)如圖1,對于所求拋物線對稱軸上的一點E,設△EBO的面積為S1,菱形ABCD的面積為S2,當S1S2時,求點E的縱坐標n的取值范圍;

(3)如圖2,D(0,﹣)為y軸上一點,連接AD,動點P從點O出發(fā),以個單位/秒的速度沿OB方向運動,1秒后,動點Q從O出發(fā),以2個單位/秒的速度沿折線O﹣A﹣B方向運動,設點P運動時間為t秒(0<t<6),是否存在實數(shù)t,使得以P、Q、B為頂點的三角形與△ADO相似?若存在,求出相應的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在直角梯形ABCD中,∠ABC=90°,上底AD為,以對角線BD為直徑的⊙O與CD切于點D,與BC交于點E,且∠ABD為30°.則圖中陰影部分的面積為 

查看答案和解析>>

同步練習冊答案