【題目】如圖,在平面直角坐標系xOy中,點A,B的坐標分別為(4,0),(2,0),現(xiàn)以B為圓心,1為半徑在第一象限內(nèi)畫半圓,M,N是此半圓的三等分點,點P在 上,射線AP交y軸于點Q,當點P從點M運動到點N時,點Q相應(yīng)移動的路徑長為( )

A.

B.

C.2﹣
D.2 ﹣2

【答案】B
【解析】解:如圖延長AN交y軸于Q1 , 延長AM交y軸于Q2 , 作NE⊥OA于E,
∵M、N是半圓的三等分點,
∴∠NBO=∠MBN=∠MBA=60°,
在RT△BNE中,∵BN=1,∠NBE=60°,
∴∠BNE=30°,EB= BN= ,NE= EB= ,
∵NE∥OQ1 ,
,
,
∴OQ1= ,
∵BM=BG,∠MBG=60°,
∴△MBG是等邊三角形,
∴MG=BM=AG,
∴∠AMB=90°,∠MAB=30°,
在RT△AOQ2中,∵AO=4,∠OAQ2=30°,
∴OQ2= OA=
∴Q1Q2=OQ2﹣OQ1=
故選B.

【考點精析】根據(jù)題目的已知條件,利用圓心角、弧、弦的關(guān)系和切線的性質(zhì)定理的相關(guān)知識可以得到問題的答案,需要掌握在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖17Z10是由邊長為1的小正方形組成的網(wǎng)格

(1)求四邊形ABCD的面積;

(2)你能判斷ADCD的位置關(guān)系嗎?說出你的理由

17Z10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉(zhuǎn)45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.
求證:

(1)△ADA′≌△CDE;
(2)直線CE是線段AA′的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A. m=-2是方程m-2=0的解 B. m=6是方程3m+18=0的解

C. x=-1是方程-=0的解 D. x=是方程10x=1的解

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D,E分別是AC,AB上的兩點,且 = = ,若△ADE的面積為1cm2 , 則四邊形EBCD的面積為( )cm2

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=mx﹣3m2+12,請按要求解答問題:

(1)m為何值時,函數(shù)圖象過原點,且y隨x的增大而減?

(2)若函數(shù)圖象平行于直線y=﹣x,求一次函數(shù)解析式;

(3)若點(0,﹣15)在函數(shù)圖象上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文藝團體為希望工程募捐組織了一場義演,共售出1000張票,籌出票款6920元,且每張成人票8元,學(xué)生票5元

1問成人票與學(xué)生票各售出多少張?

2若票價不變仍售出1000張票,所得的票款可能是7290元嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點OAC邊上的一個動點,過點O作直線MNBC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.

(1)求證:EO=FO;

(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案