D
分析:根據(jù)旋轉(zhuǎn)的性質(zhì)即可得:△BCE≌△DCF,又由同角的余角相等易證:∠ECM=∠EBC=∠FDC,則可證得:EC∥DF,即可得DM:MC=MF:ME;
由BE⊥EC,EC∥DF,易證得:BE⊥DF;
由相似三角形的面積比等于相似比的平方與等高三角形的面積比等于對應(yīng)底的比即可求得答案;
由三角函數(shù)與勾股定理即可求得點D到直線CE的距離;
根據(jù)題意易證得:四邊形DECF是矩形,即可得∠BED是平角,則問題得證.
解答:①根據(jù)題意得:△BCE≌△DCF,
∴∠EBC=∠FDC,
∵AD∥BC,∠ADC=90°,∠BEC=90°,
∴∠BCD=∠BEC=90°,
∴∠BCE+∠ECM=∠BCE+∠EBC=90°,
∴∠ECM=∠EBC=∠FDC,
∴EC∥DF,
∴△ECM∽△FDM,
∴DM:MC=MF:ME;
故①正確;
②∵∠BEC=90°,
∴BE⊥EC,
∵EC∥DF,
∴BE⊥DF.
故②正確;
③∵△ECM∽△FDM,
∴EC=CF,BC=DC,
∵sin∠EBC=
,
∴
=
,
∴EC:DF=1:
,
∴S
△ECM:S
△FDM=1:3,
∵CM:DM=1:
,
∴S
△FDM:S
△DCF=
:(1+
),
∴
.
故③正確;
④過點D作DN⊥EC 交EC的延長線于點N,
∵tan∠EBC=
,BC=
,
∴tan∠DCN=
,CD=
,
∴DN=1,
則點D到直線CE的距離為1;
∴④正確;
⑤∵M為EF中點,
∴EM=FM,
∵CE=CF,
∴△CEF與△DEF是等腰直角三角形,
∴DM=CM,
∴四邊形DECF是平行四邊形,
∵∠ECF=90°,
∴四邊形DECF是矩形,
∴∠DEC=90°,
∵∠BEC=90°,
∴∠BED=180°,
∴點B、E、D三點在同一直線上.
故⑤正確.
∴正確命題的個數(shù)是5個.
故選D.
點評:此題考查了旋轉(zhuǎn)的性質(zhì),相似三角形的判定與性質(zhì),以及矩形的判定與性質(zhì)等知識.此題綜合性很強,難度較大,注意數(shù)形結(jié)合思想的應(yīng)用.