【題目】如圖,點O是Rt△ABC的AB邊上一點,∠ACB=90°,⊙O與AC相切于點D,與邊AB,BC分別相交于點E,F.
(1)求證:DE=DF;
(2)當BC=3,sinA=時,求AE的長.
【答案】(1)見解析;(2)AE=.
【解析】
(1)連接OD,OF,由切線的性質可得∠ADO=90°,從而得到OD∥BC,從而得到∠AOD=∠ABC,∠DOF=∠OFB,并由半徑相等,再進行角的代換從而得到∠AOD=∠DOF,即可求解.
(2) Rt△ABC中,有正弦的定義求出AB,再由Rt△AOD中,設圓的半徑為r,通過正弦建立比例式方程從而進行求解.
解:(1)如圖所示,連接OD,OF,
∵⊙O與AC相切于點D,
∴∠ADO=90°,
∵∠ACB=90°,
∴OD∥BC,
∴∠AOD=∠ABC,∠DOF=∠OFB,
∵OB=OF,
∴∠ABC=∠OFB,
∴∠AOD=∠DOF,
∴DE=DF;
(2)在Rt△ABC中,∵BC=3,sinA==,
∴AB=5,
設⊙O的半徑為r,則OB=OD=OE=r,
則AO=AB﹣OB=5﹣r,AE=5﹣2r,
在Rt△AOD中,∵sinA==,
∴=,解得r=,
則AE=5﹣2r=.
科目:初中數(shù)學 來源: 題型:
【題目】有一種市場均衡模型是用一次函數(shù)和二次函數(shù)來刻化的:根據(jù)市場調查,某種商品的市場需求量y1(噸)與單價x(百元)之間的關系可看作是二次函數(shù)y1=4﹣x2,該商品的市場供應量y2(噸)與單價x(百元)之間的關系可看作是一次函數(shù)y2=4x﹣1.
(1)當需求量等于供應量時,市場達到均衡.此時的單價x(百元)稱為均衡價格,需求量(供應量)稱為均衡數(shù)量.求所述市場均衡模型的均衡價格和均衡數(shù)量.
(2)當該商品單價為50元時,此時市場供應量與需求量相差多少噸?
(3)根據(jù)以上信息分析,當該商品①供不應求②供大于求時,該商品單價分別會在什么范圍內?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象在第二象限內,點A是圖象上的任意一點,AM⊥x軸于點M,O是原點.若S△AOM=3,求該反比例函數(shù)的解析式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D是⊙O外一點,AB=AD,BD交⊙O于點C,AD交⊙O于點E,點P是AC的延長線上一點,連接PB、PD,且PD⊥AD
(1)判斷PB與⊙O的位置關系,并說明理由;
(2)連接CE,若CE=3,AE=7,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個結論:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正確的結論有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學實踐活動小組要測量學校附近樓房CD的高度,在水平底面A處安置側傾器測得樓房CD頂部點D的仰角為30°,向前走20米到達E處,測得點D的仰角為60°.已知側傾器AB的高度為1.6米,則樓房CD的高度約為(結果精確到0.1米)( 。
A. 30米 B. 18.9米 C. 32.6米 D. 30.6米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011山東濟南,22,3分)如圖1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延長CB至點D,使BD=AB.
①求∠D的度數(shù);
②求tan75°的值.
(2)如圖2,點M的坐標為(2,0),直線MN與y軸的正半軸交于點N,∠OMN=75°.求直線MN的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,正三角形和正方形內接于同一個圓;如圖②,正方形和正五邊形內接于同一個圓;如圖③,正五邊形和正六邊形內接于同一個圓;…;則對于圖①來說,BD可以看作是正_____邊形的邊長;若正n邊形和正(n+1)邊形內接于同一個圓,連接與公共頂點相鄰同側兩個不同正多邊形的頂點可以看做是_____邊形的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com