精英家教網 > 初中數學 > 題目詳情
如圖,△ABC中,AB=AC,BC=BD,AD=DE=EB,則∠A的度數為( )

A.55°
B.45°
C.36°
D.30°
【答案】分析:首先設∠EBD=x,根據等腰三角形的性質可知∠EDB=∠EBD=x,∠A=∠AED=2x.然后根據三角形內角和定理可求解.
解答:解:設∠EBD=x.∵AD=DE=EB,
∴∠EDB=∠EBD=x.則∠A=∠AED=2x.
∵BC=BD,∴∠C=∠BDC=3x.
∵AB=AC,∴∠ABC=∠C=3x.
∴2x+3x+3x=180,x=22.5,2x=45.故選B.
點評:此題主要是考查了等腰三角形的性質以及三角形的內角和定理及其推論.思路是能夠用同一個未知數表示出一個三角形中的三個角,根據三角形的內角和定理列方程求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數;
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案