【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C為 (-1,0) .如圖所示,B點(diǎn)在拋物線yx2x-2圖象上,過點(diǎn)BBDx軸,垂足為D,且B點(diǎn)橫坐標(biāo)為-3.

(1)求證:△BDC≌△COA;

(2)求BC所在直線的函數(shù)關(guān)系式;

(3)拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)先根據(jù)同角的余角相等證得,又為等腰直角三角形,可得.即可證得結(jié)論;(2;(3

【解析】試題分析:(1)先根據(jù)同角的余角相等證得,又為等腰直角三角形,可得.即可證得結(jié)論;

2)由C點(diǎn)坐標(biāo)可得BD=CO=1,即可得到B點(diǎn)坐標(biāo) 設(shè)所在直線的函數(shù)關(guān)系式為,根據(jù)待定系數(shù)法即可求得結(jié)果;

3)先求得拋物線的對(duì)稱軸為直線.再分以為直角邊,點(diǎn)為直角頂點(diǎn);以為直角邊,點(diǎn)為直角頂點(diǎn),兩種情況根據(jù)一次函數(shù)的性質(zhì)求解即可.

1, ,

為等腰直角三角形,

AAS).

2C點(diǎn)坐標(biāo)為,

∴BD=CO=1

B點(diǎn)的橫坐標(biāo)為

B點(diǎn)坐標(biāo)為

設(shè)所在直線的函數(shù)關(guān)系式為,

則有,解得

BC所在直線的函數(shù)關(guān)系式為

3)存在.

=,

對(duì)稱軸為直線

若以為直角邊,點(diǎn)為直角頂點(diǎn),對(duì)稱軸上有一點(diǎn),使

點(diǎn)為直線與對(duì)稱軸直線的交點(diǎn).

由題意得,解得

若以為直角邊,點(diǎn)為直角頂點(diǎn),對(duì)稱軸上有一點(diǎn),使,

過點(diǎn),交對(duì)稱軸直線于點(diǎn)

∵CD=OA,

∴A0,2).

易求得直線的解析式為,

,

滿足條件的點(diǎn)有兩個(gè),坐標(biāo)分別為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】口袋內(nèi)裝有一些除顏色外完全相同的紅球、白球和黑球,從中摸出一球,摸出紅球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:m216_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市九年級(jí)學(xué)生學(xué)業(yè)考試體育成績(jī),現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)進(jìn)行分段(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)統(tǒng)計(jì)如下:

學(xué)業(yè)考試體育成績(jī)(分?jǐn)?shù)段)統(tǒng)計(jì)表

根據(jù)上面提供的信息,回答下列問題:

(1)在統(tǒng)計(jì)表中,a的值為 ,b的值為 ,并將統(tǒng)計(jì)圖補(bǔ)充完整(溫馨提示:作圖時(shí)別忘了用0.5毫米及以上的黑色簽字筆涂黑);

(2)甲同學(xué)說:“我的體育成績(jī)是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù).”請(qǐng)問:甲同學(xué)的體育成績(jī)應(yīng)在什么分?jǐn)?shù)段內(nèi)? (填相應(yīng)分?jǐn)?shù)段的字母)

(3)如果把成績(jī)?cè)?0分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于命題如果ab,那么acbc,它的逆命題是________命題.(填

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明:在△ABC中,如果M、N分別是邊AB、AC上的點(diǎn),那么BN、CM不能互相平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點(diǎn),與y軸交于點(diǎn)C,過拋物線上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM.

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個(gè)單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點(diǎn)E、F.

①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時(shí),求t的值;

②如圖2,若直線M′N′與拋物線相交于點(diǎn)G,過點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) P(2,3),則點(diǎn) P 關(guān)于 x 軸的對(duì)稱點(diǎn)的坐標(biāo)為(

A. (﹣2,3) B. (2,﹣3) C. (3,﹣2) D. (﹣3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊CD的中點(diǎn).

(1)用直尺和圓規(guī)作⊙O,使⊙O經(jīng)過點(diǎn)A、B、E(保留作圖痕跡,不寫作法);

(2)若正方形ABCD的邊長(zhǎng)為2,求(1)中所作⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案