如圖l,已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連結(jié)EB,過點(diǎn)A作AMBE,垂足為M,AM交BD于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖2,若點(diǎn)E在AC的延長(zhǎng)線上,AMBE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由.
(1)證明:∵四邊形ABCD是正方形.
∴BOE=AOF=90.OB=OA ……………… (1分)
又∵AMBE,∴MEA+MAE=90=AFO+MAE
∴MEA=AFO………………(2分)
∴Rt△BOE≌ Rt△AOF ……………… (3分)
∴OE=OF ………………(4分)
(2)OE=OF成立 ……………… (5分)
證明:∵四邊形ABCD是正方形,
∴BOE=AOF=90.OB=OA ……………… (6分)
又∵AMBE,∴F+MBF=90=B+OBE
又∵MBF=OBE
∴F=E………………(7分)
∴Rt△BOE≌ Rt△AOF ……………… (8分)
∴OE=OF ………………(9分)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
17 |
17 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com