【題目】已知:如圖,在平面直角坐標(biāo)系中,是直角三角形,,點的坐標(biāo)分別為,
(1)求過點的直線的函數(shù)表達(dá)式
(2)在軸上找一點,連接,使得與相似(不包括全等),并求點的坐標(biāo);
(3)在⑵的條件下,如分別是和上的動點,連接,設(shè),問是否存在這樣的使得與相似,如果存在,請求出的值;如果不存在,請說明理由.
【答案】(1) y=x+; (2) D(,0);(3)
【解析】
(1)設(shè)過點A(-3,0),B(1,3)的直線的函數(shù)表達(dá)式為y=kx+b,
由 0=k×(-3)+b ,
3=k+b
解得k=,b=,
∴直線AB的函數(shù)表達(dá)式為y=x+.
(2)如圖,過點B作BD⊥AB,交x軸于點D,
在Rt△ABC和Rt△ADB中,
∵∠BAC=∠DAB,
∴Rt△ABC∽Rt△ADB,
∴D點為所求,
又tan∠ADB=tan∠ABC=,
∴CD=BC÷tan∠ADB=3÷=,
∴OD=OC+CD=,∴D(,0);
(3)這樣的m存在.
在Rt△ABC中,由勾股定理得AB=5,
如圖,
當(dāng)PQ∥BD時,△APQ∽△ABD,則,
解得m=,
如圖,
當(dāng)PQ⊥AD時,△APQ∽△ADB,
則
解得m=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點從點沿向以的速度移動,到即停,點從點沿向以的速度移動,到就停.
(1)若同時出發(fā),經(jīng)過幾秒鐘;
(2)若點從點出發(fā)后點從點出發(fā),再經(jīng)過幾秒與相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點D為BC的中點,點E在AC上,將△CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點. 點從點出發(fā),沿線段向點運動,點從點出發(fā),沿線段向點運動,兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)點運動到時,兩點都停止. 設(shè)運動時間為秒.
(1)求線段的長;
(2)當(dāng)為何值時,是直角三角形?
(3)是否存在某一時刻,使得分的面積為1:11?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④AC2=CQCB,其中結(jié)論正確的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k≠0,x>0)的圖象與矩形OABC的邊AB、BC分別交于點E、F,E(,6),且E為BC的中點,D為x軸負(fù)半軸上的點.
(1)求反比倒函數(shù)的表達(dá)式和點F的坐標(biāo);
(2)若D(﹣,0),連接DE、DF、EF,則△DEF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx+c的圖象如圖所示,下列結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b+c>m(am+b)+c(m≠1的實數(shù)),其中正確的結(jié)論有 ( )
A.個B.個C.個D.個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com