【題目】如圖,在半⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④AC2=CQCB,其中結(jié)論正確的是____.
【答案】②③④
【解析】
點(diǎn)C是弧AD的中點(diǎn),可得,即可得∠BAD≠∠ABC,選項(xiàng)①錯(cuò)誤;連接BD,由GD為圓O的切線,根據(jù)弦切角定理可得∠GDP=∠ABD,再由AB為圓的直徑,根據(jù)直徑所對(duì)的圓周角為直角得到∠ACB為直角,由CE⊥AB,得到∠AFP為直角,再由一對(duì)公共角,得到△APF與△ABD相似,根據(jù)相似三角形的對(duì)應(yīng)角相等可得出∠APF=∠ABD,根據(jù)等量代換及對(duì)頂角相等可得出∠GPD=∠GDP,利用等角對(duì)等邊可得出GP=GD,選項(xiàng)②正確;由直徑AB⊥CE,利用垂徑定理得到A為弧CE的中點(diǎn),得到兩條弧相等,再由C為弧AD的中點(diǎn),得到兩條弧相等,等量代換得到三條弧相等,根據(jù)等弧所對(duì)的圓周角相等可得出∠CAP=∠ACP,利用等角對(duì)等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點(diǎn),即為直角三角形ACQ的外心,選項(xiàng)③正確;利用等弧所對(duì)的圓周角相等得到一對(duì)角相等,再由一對(duì)公共角相等,得到△ACQ與△ABC相似,根據(jù)相似得比例得到AC2=CQCB,
∵在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),
∴弧AC=弧AD≠弧BD,
∴∠BAD≠∠ABC,選項(xiàng)①錯(cuò)誤;
連接BD,如圖所示:
∵GD為圓O的切線,
∴∠GDP=∠ABD,
又AB為圓O的直徑,∴∠ADB=90°,
∵CE⊥AB,∴∠AFP=90°,
∴∠ADB=∠AFP,又∠PAF=∠BAD,
∴△APF∽△ABD,
∴∠ABD=∠APF,又∠APF=∠GPD,
∴∠GDP=∠GPD,
∴GP=GD,選項(xiàng)②正確;
∵直徑AB⊥CE,
∴A為弧CE的中點(diǎn),即弧AE=弧AC,
又C為弧AD的中點(diǎn),
∴弧AC=弧CD,
∴弧AE=弧CD,
∴∠CAP=∠ACP,
∴AP=CP,
又AB為圓O的直徑,∴∠ACQ=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點(diǎn),
∴P為Rt△ACQ的外心,選項(xiàng)③正確;
連接CD,如圖所示:
∵弧AC=弧CD,
∴∠B=∠CAD,
又∵∠ACQ=∠BCA,
∴△ACQ∽△BCA,
∴,即AC2=CQCB,選項(xiàng)④正確,
綜上可知?jiǎng)t正確的選項(xiàng)序號(hào)有②③④,
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中∠BAC=120°,AB=AC,點(diǎn)M、N在邊BC上,且∠MAN=60°若BM=2,CN=3,則MN的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖(保留作圖痕跡,不要求寫作法)
(1)如圖,在一次軍事演習(xí)中,紅方偵察員發(fā)現(xiàn)藍(lán)方指揮部在A區(qū)內(nèi),到鐵路與到公路的距離相等,且離鐵路與公路交叉處B點(diǎn)600米,如果你是紅方的指揮員,請(qǐng)你在圖1所示的作戰(zhàn)圖上標(biāo)出藍(lán)方指揮部的位置。
(2).已知四邊形ABCD,如果點(diǎn)A、D關(guān)于直線MN對(duì)稱,
1)畫出對(duì)稱軸MN;
2)畫出四邊形ABCD關(guān)于直線MN的對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A. B. C的坐標(biāo)分別為(1,0)、(2,3)、(3,1).
(1)作出△ABC關(guān)于x軸對(duì)稱的△A1 B1 C1,并寫出B1的坐標(biāo):B1(___,___)
(2)在y軸上找一點(diǎn)D,使得BD+DA的值最小,D點(diǎn)的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P是第一象限角平分線上的一點(diǎn),OP=,直角三角板的直角頂點(diǎn)與點(diǎn)P重合,把直角三角板繞點(diǎn)P轉(zhuǎn)動(dòng),另兩條直角邊所在直線與x軸正半軸、y軸正半軸分別交于A、B兩點(diǎn)
(1)求點(diǎn)P的坐標(biāo)
(2)若點(diǎn)A的坐標(biāo)為(0,m),點(diǎn)B的坐標(biāo)為(n,0),試判斷m、n有什么數(shù)量關(guān)系,并說(shuō)明理由
(3)連接AB,△ABO的面積是否存在最大值,若存在,求出最大值,若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題探究
①如圖1,在直角中,,點(diǎn)是邊上一點(diǎn),連接,則的最小值為_________.
②如圖2,在等腰直角中, ,若,求邊的長(zhǎng)度(用含的代數(shù)式表示);
(2)問(wèn)題解決
③如圖3,在等腰直角中,,點(diǎn)是邊的中點(diǎn),若點(diǎn)是邊上一點(diǎn),試求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4,面積為12,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F.若D為BC邊的中點(diǎn),M為線段EF上一個(gè)動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com