【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是 .
【答案】8﹣π
【解析】解:作DH⊥AE于H, ∵∠AOB=90°,OA=3,OB=2,
∴AB= = ,
由旋轉(zhuǎn)的性質(zhì)可知,OE=OB=2,DE=EF=AB= ,△DHE≌△BOA,
∴DH=OB=2,
陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積﹣扇形DEF的面積
= ×5×2+ ×2×3+ ﹣
=8﹣π,
所以答案是:8﹣π.
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念和扇形面積計(jì)算公式,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示
(1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程x2+x=1的根在圖上近似地表示出來(描點(diǎn)),并觀察圖象,寫出方程x2+x=1的根(精確到0.1).
(2)在同一直角坐標(biāo)系中畫出一次函數(shù)y= x+ 的圖象,觀察圖象寫出自變量x取值在什么范圍時(shí),一次函數(shù)的值小于二次函數(shù)的值.
(3)如圖,點(diǎn)P是坐標(biāo)平面上的一點(diǎn),并在網(wǎng)格的格點(diǎn)上,請選擇一種適當(dāng)?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點(diǎn)落在P點(diǎn)上,寫出平移后二次函數(shù)圖象的函數(shù)表達(dá)式,并判斷點(diǎn)P是否在函數(shù)y= x+ 的圖象上,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn),觀察圖象可知:①當(dāng)x=﹣3或1時(shí),y1=y2;②當(dāng)﹣3<x<0或x>1時(shí),y1>y2;即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問題:求不等式x3+4x2﹣x﹣4>0的解集.
艾斯柯同學(xué)類比以上知識的研究方法,用函數(shù)與方程的思想對不等式的解法進(jìn)行了探究,請將他下面的②③④補(bǔ)充完整:
①當(dāng)x=0時(shí),原不等式不成立:當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1< .
②構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= 在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.
雙曲線y4= 如圖2所示,請?jiān)诖俗鴺?biāo)系中直接畫出拋物線y3=x2+4x﹣1(可不列表);
③利用圖象,確定交點(diǎn)橫坐標(biāo)
觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為
④借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)P,P在第一象限,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4, = .
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形ABCD中,AB=2,BC=1,動點(diǎn)P從點(diǎn)B出發(fā),沿路線B→C→D做勻速運(yùn)動,那么△ABP的面積S與點(diǎn)P運(yùn)動的路程x之間的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面上,Rt△ABC與直徑為CE的半圓O,如圖1擺放,∠B=90°,BC=m,AC=2CE=n,半圓O交BC邊于點(diǎn)D,將半圓O繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),點(diǎn)D隨半圓O旋轉(zhuǎn),且∠ECD=∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).
(1)①當(dāng)α=0°時(shí),連接DE,則∠CDE=°,CD=;②當(dāng)α=180°時(shí), = .
(2)試判斷:旋轉(zhuǎn)過程中 的大小有無變化?請僅就圖2的情形給出證明.
(3)若m=4,n=5,當(dāng)α=∠ACB時(shí),線段BD= .
(4)若m=4 ,n=6,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時(shí),線段BD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角邊長為2a的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點(diǎn)且與半圓O1相切,則圖中陰影部分的面積是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com