【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設(shè)點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
【答案】(1)點Q運動的速度是1cm/s;(2);(3)存在,t=或t=.
【解析】
試題分析:(1)根據(jù)函數(shù)圖象中E點所代表的實際意義求解.E點表示點P運動到與點B重合時的情形,運動時間為3s,可得AB=6cm;再由S△APQ=,可求得AQ的長度,進而得到點Q的運動速度;
(2)函數(shù)圖象中線段FG,表示點Q運動至終點D之后停止運動,而點P在線段CD上繼續(xù)運動的情形.如答圖2所示,求出S的表達式,并確定t的取值范圍;
(3)當點P在AB上運動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示,求出t的值;當點P在BC上運動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示,求出t的值.
試題解析:(1)由題意,可知題圖2中點E表示點P運動至點B時的情形,所用時間為3s,則菱形的邊長AB=2×3=6cm.此時如答圖1所示:
AQ邊上的高h=ABsin60°=6×=cm, S=S△APQ= AQh=AQ×3=,解得AQ=3cm. ∴點Q的運動速度為:3÷3=1cm/s.(2)由題意,可知題圖2中FG段表示點P在線段CD上運動時的情形.如答圖2所示:
點Q運動至點D所需時間為:6÷1=6s,點P運動至點C所需時間為12÷2=6s,至終點D所需時間為18÷2=9s.
因此在FG段內(nèi),點Q運動至點D停止運動,點P在線段CD上繼續(xù)運動,且時間t的取值范圍為:6≤t≤9.過點P作PE⊥AD交AD的延長線于點E,則PE=PDsin60°=(18-2t)×,
S=S△APQ=ADPE=×6×(+)=.
∴FG段的函數(shù)表達式為:S=(6≤t≤9).
(3)菱形ABCD的面積為:6×6×sin60°=18,
當點P在AB上運動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示.
此時△APQ的面積S=AQAPsin60°=t2t×=,
根據(jù)題意,得=,
解得:t=s,
當點P在BC上運動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示.
此時,有S梯形ABPQ=S菱形ABCD,即(2t-6+t)×6×=×18,
解得t=s,
答:存在,當t=或時,使PQ將菱形ABCD的面積恰好分成1:5的兩部分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.
(1)求證:四邊形ADEF為平行四邊形;
(2)當點D為AB中點時,判斷ADEF的形狀;
(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標系中,將一次函數(shù)y=x﹣3(x>1)的圖象,在直線x=2(橫坐標為2的所有點構(gòu)成該直線)的左側(cè)部分沿直線x=2翻折,圖象的其余部分保持不變,得到一個新圖象.若關(guān)于x的函數(shù)y=2x+b的圖象與此圖象有兩個公共點,則b的取值范圍是( 。
A. 8>b>5B. ﹣8<b<﹣5C. ﹣8≤b≤﹣5D. ﹣8<b≤﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠EAD=∠C.
(1)試判斷AE與CD的位置關(guān)系,并說明理由;
(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返行駛,每次行駛的路程(記向東為正)記錄如下(6<x<14,單位:km):
(1)說出這輛出租車每次行駛的方向;
(2)這輛出租車一共行駛了多少路程?
(3)這輛出租車第四次行駛后距離A地多少千米?在A地的什么方向?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.
(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.
(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.
②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點H(A、H、B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)問CH是否為從村莊C到河邊的最近路?(即問:CH與AB是否垂直?)請通過計算加以說明;
(2)求原來的路線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是邊長為6的等邊△ABC三邊中垂線的交點,將△ABC繞點O逆時針方向旋轉(zhuǎn)180°,得到△A1B1C1,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0, )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com