精英家教網(wǎng)已知四邊形ABCD中,BC=DC,對(duì)角線AC平分∠BAD.
(1)作CE⊥AB,CF⊥AD,E、F分別為垂足.求證:△BCE≌△DCF.
(2)如果AB=21,AD=9.BC=DC=10,求對(duì)角線AC的長(zhǎng).
分析:(1)由角平分線上的點(diǎn)到角的兩邊的距離相等,易證明△BCE≌△DCF.
(2)需要作一條輔助線,可在AB上取一點(diǎn)G使AG=AD,則有△ADC≌△AGC,易證△CGB為等腰三角形,過(guò)C作CH⊥GB,在Rt△ACH中可求得AC的長(zhǎng).
解答:精英家教網(wǎng)(1)證明:∵AC平分∠BAD,且CE⊥AB,CF⊥AD;
∴CF=CE;
又∵CD=BC;
∴Rt△BCE≌Rt△DCF.

(2)解:取AG=AD,作CH⊥AB,垂足為H,精英家教網(wǎng)
得△ADC≌△AGC,
∴AG=AD=9,CG=CD=10;
∴CG=CB;
∴△CGB為等腰三角形.
∵GB=AB-AG=21-9=12,GH=HB=6;
∴CH2=100-36=64,
∴CH=8;
∴AH=AG+GH=9+
1
2
GB=9+6=15;
Rt△ACH中,AC2=AH2+CH2=152+82=172
∴AC=17.
點(diǎn)評(píng):此題考查了角平分線上的點(diǎn)到角的兩邊的距離相等及三角形全等的證明,輔助線、勾股定理的利用等知識(shí)點(diǎn),推理較為復(fù)雜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
45

求S△ABD:S△BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知四邊形ABCD中,AB=BC=CD,∠B=90°,根據(jù)這樣的條件,能判定這個(gè)四邊形是正方形嗎?若能,請(qǐng)你指出判定的依據(jù);若不能,請(qǐng)舉出一個(gè)反例(即畫(huà)出一個(gè)四邊形滿足上述條件,但不是正方形),并指出若再添加一個(gè)什么條件,就可以判定這個(gè)四邊形是正方形,你能指出幾種情況嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD中,給出下列四個(gè)論斷:(1)AB∥CD,(2)AB=CD,(3)AD=BC,(4)AD∥BC.以其中兩個(gè)論斷作為條件,余下兩個(gè)作為結(jié)論,可以構(gòu)成一些命題.在這些命題中,正確命題的個(gè)數(shù)有(  )
A、2個(gè)B、3個(gè)C、4個(gè)D、6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

選做題:(A)已知四邊形ABCD中,AD∥BC,對(duì)角線AC、BD交于點(diǎn)O,∠OBC=∠OCB,并且
 
,求證:四邊形ABCD是
 
形.(要求在已知條件中的橫線上補(bǔ)上一個(gè)條件
 
,在求證中的橫線上添上該四邊形的形狀,然后畫(huà)出圖形,予以證明,證明時(shí)要用上所有條件)
(B)某市市委、市府2001年提出“工業(yè)立市”的口號(hào),積極招商引資,財(cái)政收入穩(wěn)步增長(zhǎng),各年度財(cái)政收入如下表:
年 份 2001 2002 2003 2004
財(cái)政收入
單位(億元)
10 10.5 12 14.5
按這種增長(zhǎng)趨勢(shì),請(qǐng)你算一算2006年該市的財(cái)政收入是多少億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn),
①求證:四邊形EFGH是平行四邊形.
②探索下列問(wèn)題,并選擇一個(gè)進(jìn)行證明.
a.原四邊形ABCD的對(duì)角線AC、BD滿足
AC⊥BD
AC⊥BD
時(shí),四邊形EFGH是矩形.
b.原四邊形ABCD的對(duì)角線AC、BD滿足
AC=BD
AC=BD
時(shí),四邊形EFGH是菱形.
c.原四邊形ABCD的對(duì)角線AC、BD滿足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
時(shí),四邊形EFGH是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案