如圖,已知△ABC為等腰直角三角形,點D為邊BC上的一動點(點D不與B、C重合),以AD為邊作正方形ADEF(A、D、E、F按逆時針排列),連接CF。求證: CF+CD=AC。
解:∵正方形ADEF,∴AF=AD,∠DAF=90°。
∵△ABC是等腰直角三角形,∴AB=AC,BC=AC,∠BAC=90°。
∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF。
∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS)。
∴CF=BD。∴CF+CD=BD+CD=BC=AC。
【考點】動點問題,正方形和等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),等量代換。
【解析】一方面根據(jù)已知得出AD=AF,AB=AC,∠BAC=∠DAF=90°,求出∠BAD=CAF,證△BAD≌△CAF,從而得到CF=BD;另一方面,根據(jù)等腰直角三角形的性質(zhì)得出BC=AC,從而得到CF+CD=BD+CD=BC=AC。
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點P是以O(shè)為圓心,AB為直徑的半圓上的動點,AB=2,設(shè)弦AP的長為x,△APO的面積為y,則當(dāng)y=時,x的取值是【 】
A. 1 B. C. 1或 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,拋物線交y軸于點C,對稱軸與x軸交于點D,頂點為M,設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,直線PE繞點P旋轉(zhuǎn),與y軸交于點E,是否存在以O(shè)、P、E為頂點的三角形與△OPD全等?若存在,請求出點E的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知在平面直角坐標(biāo)系中,四邊形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,動點P從點O以每秒2個單位的速度向點A運動,動點Q也同時從點B沿B→C→O的線路以每秒1個單位的速度向點O運動,當(dāng)點P到達(dá)A點時,點Q也隨之停止,設(shè)點P,Q運動的時間為t(秒).
(1)求點C的坐標(biāo)及梯形ABCO的面積;
(2)當(dāng)點Q在CO邊上運動時,求△OPQ的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)以O(shè),P,Q為頂點的三角形能構(gòu)成直角三角形嗎?若能,請求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運動,其中一個動點到達(dá)端點時,另一個動點也隨之停止運動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式, 并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一根木棒(AB)長為4,斜靠在與地面(OM)垂直的墻壁(ON)上,與地面的傾斜角(∠ABO)為60°,當(dāng)木棒A端沿N0向下滑動到A′,B端沿直線OM向右滑動到B′,與地面的傾斜角(∠A′B′O)為45°,則木棒中點從P隨之運動到P′所經(jīng)過的路徑長為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,將由5個邊長為1的小正方形組成的十字形紙板沿虛線剪拼成一個大正方形,需剪4
刀。
思考發(fā)現(xiàn):大正方形的面積等于5個小正方形的面積和,大正方形的邊長等于_______。
實踐操作:如圖2,將網(wǎng)格中5個邊長為1的小正方形組成的圖形紙板剪拼成一個大正方形,要求剪
兩刀,畫出剪拼的痕跡。
智力開發(fā):將網(wǎng)格中的5個邊長為1的正方形組成的十字形紙板,要求只剪2刀也拼成一個大正方形。
在圖中用虛線畫出剪拼的痕跡。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連結(jié)DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為______cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm²),求S與t的函數(shù)關(guān)系式.
(4)連結(jié)CD.當(dāng)點N于點D重合時,有一點H從點M出發(fā),在線段MN上以2.5cm/s的速度沿M-N-M連續(xù)做往返運動,直至點P與點E重合時,點H停止往返運動;當(dāng)點P在線段EB上運動時,點H始終在線段MN的中心處.直接寫出在點P的整個運動過程中,點H落在線段CD上時t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com